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Foreword

This collection of technical reports and technical memoranda desls
with the following topics: accurate efficient evalustion of cumulstive or
exceedance probability distributions directly from characteristic
functions; determination of the performance of general second-order
processors with nonstationary Gaussian inputs; the exsct operating
characteristics of a sum of an envelope-detecied narrowband Gaussian
process and sine wave; the resolution of the right-left ambiguity of a
randomly moving line array; the operating characteristics of a cross-
correlator with sample mean removal; statistical characterization of the
under-ice profile; and the evaluation of densities and distributions from
knowledge of high-order moments.

Some of the material presented here is based heavily on earlier work
by the author, which can be found in the following volumes in addition
to the referenced technical reports:

Performance of Detection and Communication Systems, NUSC
Scientific and Engineering Studies, 1974;

Spectral Estimation, NUSC Scientific and Engineering Studies, 1977;

Coherence Estimation, NUSC Scientific and Engineering Studies,
1979;

Receiver Performance Evaluation and Spectral Analysis, NUSC
Scientific and Engineering Studies, 1981; and

Signal Processing Studies, NUSC Scientific and Engineering Studies,
1983,

Dr. William A. Von Winkle
Associate Technical Director
for Technology
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Technical Report 7023
1 October 1983

Accurate Efficient Evaluation
Of Cumulative or Exceedance
Probability Distributions
Directly From

Characteristic Functions

A. H. Nuttall
ABSTRACT

An accurate and efficient method of evaluating the entire cumulative
or exceedance probability distribution, via one fast Fourier transform
of the sampled characteristic function, is presented. The sampling rate
applied to the characteristic function results in aliasing of the
probability density function, while the limited extent of the sampling
gives rise to a systematic disturbance in the calculated probability
distribution. Both types of errors are easily recognizable and can be
controlled by a trial and error procedure whereby the calculated
distributions are plotted for observation and modification.

The size of the fast Fourier transform determines the number of
distribution values available, but has no effect on the accuracy of the
result. Regardless of the number of characteristic function evaluations
required for accurate results, the storage required is just that
corresponding to the size of the fast Fourier transform.

A program for the procedure is presented and the inputs required of

the user are indicated. Several representative examples and plots
illustrate the utility of the approach.

Approved for public release; distribution uniimited.
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LIST OF SYMBOLS

X random variable of primary interest

fx(f) characteristic function of random variable x

Pylv) probability density function of random variable x

b bias or shift added to x

y random variable y=x+b

fy($) characteristic function of random variable y

My mean of random variable x

Dy(v) probability density function of random variable y
Px(v) cumulative distribution function of random variable x
Py(v) cumulative distribution function of random variable y
g(¢,v) auxiliary function (6)

Im imaginary part

My mean of random variable y

C(v) right-hand side of (8)

A sampling increment in argument § of characteristic function
3&(v) aliased version of p (v); (12)

SA(g) impulse train (13)

M size of FFT employed

z, sequence of characteristic function samples; (20)

2 collapsed sequence; (21)

L 1imit on integral of characteristic function; (28)

N

number of nonzero z.; N=L/a
overbar ensemble average
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ACCURATE EFFICIENT EVALUATION OF CUMULATIVE OR
EXCEEDANCE PROBABILITY DISTRIBUTIONS DIRECTLY FROM
CHARACTERISTIC FUNCTIONS

INTRODUCT 10N

The performance of a signal processor can often be evaluated in terms of
the characteristic function of the decision variable, either numerically or in
closed form; see for example, refs. 1 and 2. However, a closed form for the
corresponding probability density function or cumulative distribution function
is seldom available, and numerical procedures must be employed. Several such
procedures have been published in the literature, refs. 3-8. However they
have limited accuracy or they require extensive storage or analytical
manipulations and calculations.

We present a technique which is limited in accuracy only by the round-off
noise of the computer or by the errors of the special functions required in
the characteristic function calculation. The amount of storage depends only
on the number of cumulative or exceedance distribution function values
requested and does not influence the accuracy of the final probability
values. The entire cumulative and exceedance distribution function values
result as the output of one fast Fourier transform (FFT). The size of the FFT
dictates the storage required and the spacing of the calculated probability
values, but not their accuracy.

The addition and subtraction of integrand functions given in ref. 7 can
be entirely circumvented and yet enable use of an FFT, through proper
manipulation of the origin contribution of the characteristic function.
Specific connections with past results will be noted at appropriate points in
the derivations.
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DERIVATION OF PROCEDURE

Shifted Random Variable

The primary random variable of interest is the real gquantity x with given

characteristic function f (§) which is related to the probability density
function p  of random variable x via Fourier transform *

£ (5) = |dv exp(isv) p,(v). (1)

We define secondary random variable y as
y = X+b, (2)

where bias (shift) b is a constant, chosen such that random variable y has
insignificant probability of being less than zero. However, we also pick b as
small as possible, so that the characteristic function of y,

f,(5) = f,(§) exp(ibF), (3)

will vary siowly with¥. In fact, b can be negative, as for example if x were
limited to values larger than some positive threshold. The approach here is
not limited to positive random variables x, as were some of the results in
ref. 7, but is applicable to any random variable distribution.

By way of example, for an exponential probability density function for
random variable x, we choose b=0; whiie Tor a Gaussian random variable,
be-y +84, yields a probability tess than 1E-15 of y being negative. The
probability density function of random variable y therefore appears as
depicted in figure‘l.

* [ntegrals and sums without limits are over (-e,+®),
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r,(V)

0 Vv
Figure 1. Probability Density Function of Secondary Random Variable y

The cumulative distribution functions of random variables y and x are
related according to

¥
-:[ét py(t) = Py(v) = Px(v-b); Px(v) = Py(v+b). (4)

Thus we can inspect Px(v) in the aneighborhood of v=-b (the lower edge of
interest of x) by looking at cumulative distribution function Py(v) in the
neighbornood of v=0. More precisely, we will investigate Py(v) for values
of v greater than zero, since this is the region of significant variation of
Py(v); this is called the positive neighborhood of v=0.

Approximation to Cumulative Distribution Function

From ref. 4, eq. 7, we have the cumulative distribution function of
random variable y in terms of the characteristic function according to

+a
1
Py(v) = 5 -o,[dg 9(f,v), (5)

where we have defined auxiliary function

f,($)
g(§,v) = Im {exp(-iSV) -{-;—} (6)

Observe for later use that

1+3 -
g(0+,v) = lim Im{(l—’l,V) 1;uy} o= u'y v, (7)
Foor "

where My is the mean of random variable y.
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For v in the neighborhood of zero, exp(-i§v) in (6) varies slowly with ¥,
and we have the approximation, via the Trapezoidal rule, to (5) as

+c0

Pylv) = %_— - 5 9(0%,v) - E 4 g(na,v) = C(v), (8)
n=1

where the right-hand side of (8) has been defined as C(v). Here, a is the
sampling interval in &, and is smal) enough to track changes in exp(-ifv)#

f,(s)lg. We choose the Trapezoidal rule in (8) over other integration rules,
such as Simpson's rule, because it results in minimum aliasing for Fourier

transforms relative to all other rules; see appendix A for elaboration and
proof.
Observe from (8) that

Py(O) = C(0) means C(0) =0, (9)

since Py(O) is insignificant by the choice of b in (2); this relatisn will
be used later.

Relationship of Approximation

Although we want to evaluate the exact cumulative distribution function
Py(v), we have instead arrived at an approximation C{v) via (8). How are
these two related? To determine the relationship, we manipuizte (6)-(8) as
follows:

nn
n=1
400
1,4 V-u . f. (na) _
=3 —2--——-zw - Im Zexp(-.nt\v) —L——"n = (10)
n=1
1 4 V-u 1 :EE . f (na)
=7+?——-Y-” -7 expéinav) "L—'n . (11)
n0
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The removal of the imaginary operation from within the summation in (10) is a
crucial step; it does not create a problem in divergence since n > 0. This is
in contrast with the integral of (5) and (6), where removal of the imaginary
operation would create a divergent integral. This postponement of the removal
of the imaginary operation, until after the approximation to the integral was
developed in (8), is the major difference with the results in ref. 7.

Taking a derivative of (11), we obtain

C'(v) = %; + %; Eexpéim&v) fy(nA) =
n40

A . _
=5 Zexp(-—m‘w) fy(nA) =
n

= %-; j‘df exp(-i§v) f (§) 8 §(§) =
2\ _ =
- p,188,, () = So (-0 292 5 (v), (12)
A n

where infinite impulse train

§,(5) = >5(5-na), (13)
n
where @ denotes convolution, and where we have used the relation
1 .
o jdt exp(-iwt) ASA(t) = Sa_'(u). (14)
A

This last result follows from ref. 9, p. 28, rule 11, with u(t) = §(t), T=a,
F=1/T, and w=2xf. Relation (12) indicates that C'(v) is an infinitely aliased
version of the probability density function py(v), with resultant period

2x/4 in v. For small enough sampling increment a in (8), there will be very
little overlap of the displaced versions of Py in {12), thereby yielding the
good approximation
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Ey(v) - py(v) for 0 < v < 2v/a. (15)

The situation for relation (12) is depicted in figure 2.

«ORIAC
R
T o " Y
A A

Figure 2. Infinitely Aliased Probability Density Function 5y(v)

There now follows from (12),
C(v) = C(0) + S du ‘by(u) = C(0) + ?'y(v), (16)
where C(0) is given by (10) as
An = f (nA)
C(0) =3 -5X - Im 2—1;5—- (17)

n=1

Relation (16) is an exact relation, showing that C(v) is the integral of the

infinitely aliased version of py(v), starting at v=0, plus an additive
constant which is substantially zero; see (9).

So for v in the positive neighborhood of zero, (4), (8), (16), and (9)
yield

P (v-b) = Py(v) = C(v) = C(0) + ?‘y(v) - ?’y(v). (18)

Thus the quantity we want, the left-most term in (18), is
well-approximated by calculated gquantity C(v), which itself is approximately
the integral of the infinitely aliased version of py(v).

6
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Calculation of C{v)

Let v = gﬁ% in (10), where M and k are arbitrary integers. Then

o0

k b . f. (na)
C(%" - % *H- gt - o 2 exp(-i2nnk/M}-L——1} =
N=l
1 1 =
K -
= E + ﬁ - ';" Im 2 exp(—121rnk/M) Zn ’ (19)
n=0

wnere we define complex sequence

i %Auy for n=0

Z = . (20)
n fy(nA)/n for n>l

Now define collapsed sequence (ref. 7, pp. 13-16) as
Fpe

?n = :2; zn+Mj for 0<n< Ml (21)
J=0

Then since z_ receives the same weight as Zey; 10 (19), regardiess of the
value of k, (19) can be expressed as

M-1
@ bbbl S eormmm ). o
n=0

Relation (22) is exact and valid for all k. Since we are only interested
in tne positive neignhbornood of v=0 in (18), we confine attention in (22) to
0 < k < M-1.* Relation (22) can then be accompliished by an M-point FFT if M
is chosen to be a power of 2. Notice that storage only for the M complex
numbers {in} in (21) is required, even though the {zﬁ} sequence in (20) is
of infinite length.

* Values for other k are available from (22) when we observe that

2n{ M+ 2k
C( n )=1+C(m-— for all k.
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Observe that the size of M in no way affects the error of the calculation

C(ﬁ%ﬁ) or estimation of Py(v). Rather, M specifies the spacing at which C(%§5

calculated, and can be coarse if desired. The accuracy of the estimate of
Py(v) is governed thus far by 4, through the aliasing depicted in figure 2.

Reference to (18) now yields

P (B - b) = C(3) for 0¢k ML, (23)

where the latter quantity is given by (22). Thus the M-point FFT sweeps out
the argument range (-b,-b+2x/a) for the cumulative distribution function R.

If we want the exceedance distribution function of y instead of the
cumulative distribution function, we use (18) and (22) to get

-1
1-cBX) =3 -Ee LS exp(-izankm) & § for 0. < k < M1 (28)
n=0

(By the footnote to (22), we have 1-C(2x/a) = -C(0).)

Since My must be known in (20) in order to use this approach, we need
the mean u, of random variable x, since from (2)

The quantity My can be found analytically from characteristic function
f (¥) according to

f;(O) = iu; (26)

see (1).

&

of

) is
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In addition to the error caused by aliasing associated with nonzero
sampling increment A, an additional error occurs because we cannot calculate
all the coefficients {ZA& in (20) and (21) out to n=+w, Rather, we
terminate the calculation at integer n=N, such that Izn} is sufficiently
small as to be negligible for n > N. Letting

L = Na, (27)

this is equivalent to ignoring the contribution to (5) of the tail error

b T £,(5)
—Sd‘ g(®,v) = -Im _(df exp(-ifv) —{—?— (28)
L L

If the asymptotic behavior of fy(;) for large § is known, this error can
sometimes be evaluated in closed form and used to ascertain an adequate value
of L. Instead, we have observed that tail error (28) causes a characteristic
low-level sinusoidal variation in the calculated cumulative distribution
function for small v near 0, and in the calculated exceedance distribution
function for large v near 2r/A. MWhen this sinusoidal variation is deemed
excessive, L can be increased until the effect disappears or decreases to
acceptable levels. This trial and error approach avoids the necessity of
analytically upper-bounding the magnitude of error (28), which is often very
tedious and generally pessimistic.

So there are two errors to be concerned with: aliasing due to nonzero
sampling interval A and tail error due to non infinite limit L. Later
examples will demonstrate how these errors manifest themselves in the
cumulative and exceedance distributicn functions and how they can be
controlled by a trial and error approach.
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Relation to Requicha's Method, ref. §

From ref, 5, eqs. 7, 9, 10, the cumulative distribution function is given
by an expression that can be manipulated into the form (using current notation)

M/2 (nA) M/Z
Fr '-;{ 1 Z exp(-i2nkn/M) L —r =~ + = Im Z . (29)

n=1 n=1

Although this is similar to the upper line of (19) here, it differs in several
important respects:

1. Fk does not use mean uy at all; it is therefore not using a
direct approximation to the specified integral in (5) and (6).

2. From (29), there follows F0 = 0, Fy = 1; however, these results
are not strictly true for the actual cumulative distribution function at these
end points, thereby leading to poor estimates in the neighborhoods of these
points. This is due to the arbitrary origin established in ref. 5, eq. 6.

3. The sums in (29) utilize characteristic function samples fy(nA)
only for n < M/2, where M is the size of the FFT. This is a very severe and
unnecessary restriction; in fact, the sum on n in (29) ought to be conducted
to the point where the tail contribution, (28), is negligible, regardless of
the value of M,

4, In ref. 5, if eq. 4 is substituted into eq. 1, and the summation
limits are extended toxe, we gec exactly the second line of (12) here. When
the probability density function is integrated to get the cumulative
distribution function in ref. 5, eq. 6, the resuitant cumulative distribution
function is arbitrarily set to zero at v=0. We instead have from (9) and (17},

A f (na)
Py(0)=C(0)=%—-2-;x-%-Im 54’—"— , (30)

n=1

which is small, but not necessarily zero. This consideration is very

important on the tails of the cumulative and exceedance distribution functions.
10
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Summary of Procedure

The cumulative distribution function of y is given by

M-1
2nk 2nk 1.k 1 . A
Py(ﬁK_) = C(EK") =5t -cIm :EE exp{-i2xnk/M) z,
n=0
for 0< k< M1, (31)

where M is the size of the FFT and storage employed. Also

+®

Z = § Zoayy for 0gn <ML, (32)
=0
where
izau,  for n=0
2y
z, = fy(nA)/n for 1 < n < N{. (33)
0 forn >N

(The value for n=N should be scaled by 1/2 for the Trapezoidal rule).

The zero values for Z,, when n > N, serve to terminate the collapsed sum in
(32) at a finite upper limit. The value of N is given by the integer part of
L/a, where & and L must be chosen so as to minimize aliasing and tail error,
respectively. The characteristic function of random variable y needed in (33)
is given by

f () = £,(§) exp(iby), (34)

in terms of the characteristic function of the primary random variable x,
where shift b must be chosen such that y = b+x is positive with probabilty
virtually 1. The mean My = b+u, can be determined analytically from
knowledge of characteristic function fx(;), Finally, the exceedance
distribution function for random variable y is obtained by subtracting (31)

from 1.

11
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EXAMPLES
Programs for the following five examples are listed in appendix B.

1. Chi-Square

A chi-square variate of 2K degrees of freedom has probability density
function (ref. 10)

K-1
px(v) = VAAK exp(-v/2) for v > 0 (35)
27 (K-1):
and characteristic function
£ . ner—K
(F) = (1-i25)7. (36)

Since random variable x is obviously nonnegative by (35), we can choose shift
b=0; i.e. y=x. A plot of the cumulative and exceedance distribution functions
of random variable y obtained from characteristic function (36) with K=4 is
given in figure 3 for 0 < v < 2s/a. The values of A and L have been chosen
such that aliasing and tail error are insignificant.

The ordinate scale for figure 3 is a logarithmic one. The lower right
end of the exceedance distribution function curve decreases smoothly to the
region 1E-11, where round-off noise is encountered. The exceedance
distribution function values continue to decrease with v until, finally,
negative values {due to round-off noise) are generated. For negative
probability values, the logarithm of the absolute value is plotted, but
mirrored below the 1E-12 level. These values have no physical significance,
of course; they are plotted to illustrate the level of accuracy attainable by
this procedure with appropriate choices of 4 and L.

For this example, N=L/A=2666, while M=256. Thus collapsing, according to
(21) or (32), by over a factor of 10 has been employed and a small size FFT
has been utilized. Nevertheless the error realized for the cumulative and
exceedance distribution functions is in the 1E-12 range, the limit of accuracy
of the Hewlett Packard 9845B Desk Calculator used here. Finer spacing in the
distribution outputs is achievable by merely increasing M,

12
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mulafife 2K = % é:g;;:s of
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Figure 3. Chi-Square; L=200, A=.073, b=0, M=256

13
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2. Gaussian

The characteristic function for a zero-mean unit-variance random variable
is

f,(§) = exp(-§/2), (37)

and the probability density function and cumulative distribution function are
(ref. 11, eq. 10.5.3)

b, (v) = (2072 exp(?12), P (v) =F(v). (38)

For b = 5x/2, using (4),

Py(O) = Px(-b) =¢(-b) = 2E-15. (39)

which is negligible, as desired.

Plots of the cumulative and exceedance distribution functions for random
variable y are given in figure 4 for L=7, 4=.3. The logarithmic ordinate
gives rise to the characteristic parabolic shape on the tails of the
distributions. Once again, the probabilities decrease to the level of the
round-off noise and fluctuate around 1E-12 near the edges of the fundamental
aliased interval (0,2#/4). The fact that the cumulative distribution function
of y starts in the round-off noise at v=0 indicates that b=5x/2 was large
enough to guarantee y > 0 with probability virtually 1. Also indicated on the
figure is the origin for random variable x. We have, from (4),

Py(u) = Py(u+b); (40)

thus for exampile

Prob(x < 0) = P (0) = Py(b) = .5. (41)

14
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In figure 5, the only change is to decrease limit L from 7 to 6. The
tail error mentioned in (28) et seq. then dominates the round-off noise and
has a sinusoidal variation. Aliasing is not a problem, as witnessed by the
fact that the cumulative and exceedance distribution functions of random
variable y have decayed below 1E-12 well before the edges of the interval are
reached.

When limit L is restored to 7, and sampling increment A is increased to
.5, aliasing becomes significant, as shown in figure 6. The exceedance
distribution function has not yet decayed to the round-off noise level at
v=2n/A, and the cumulative distribution function shows a large negative
probability region near v=0. Shift b has been maintained at the value 5#/2,
corresponding to (39).

When L and A are restored to their values 7 and .3 as for figure 4, but b
is decreased to 5x/3, the probability of y becoming negative is, from (4) and
(38), §(-57/3) = .82E-7. This is reflected in the cumulative distribution
function for y in figure 7 at v=0, where the probability value is well above
the round-off noise level. Also, the exceedance distribution function
develops significantly negative values near v = 2n/a.

Accurate evaluation of the cumulative and exceedance distribution
functions can only be achieved when L, 4, and b are properly chosen. Probably
the optimum combination for the Gaussian variate is displayed in figure 8,
where A has been increased to .4, the distributions are centered on the

fundamental aliased interval (0, 2x/a) by choice of b, and L is taken at 7 to
avoid tail error.

3. Smirnov

The limiting characteristic function of a measure of goodness of fit
based on the sample distribution function was derived by Smirnov and is given
by (ref. 12, eq. 30.104)

1/2
fx(}’) = é?ﬁ‘(?f) where s = (1+i}f¥ for ¥> 0. (42)
16
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An expansion about $=0 yields

f (§) = 1% %s -%myz; i.e., u, = 1/6, ai = 1/45. (43)

And since the goodness of fit is always positive, random variable x is
positive and we can choose

b=0. (44)
Since
sin((1+1F)~ iz exp(F(1-1)) as §»+e, (43)
it follows that
£ ~ 221V g exp(- HF + iFUF- ) as §ase (46)

The phase of this term rotates according to v§/2; if we were to choose b#0,

fy(B) would rotate faster than f,(§) (1inear with § rather than y§'). This
could necessitate a faster sampling rate, which is undesirable.

The cumulative and exceedance distribution functions are plotted in
figure 9. L and A have been chosen so as to avoid tail error and aliasing.
The exceedance distribution function is seen to decay exponentially until it
reaches approximately 2E-11; the bump in the curve at this point is a
manifestation of the limited accuracy of the trigonometric functions built
into the calculator employed. Larger values of v lead to round-off noise
around the 1E-12 level.

A comparison of results for this characteristic function, with Requicha's
method described in (29) et seq., is given in figure 10 for FFT size M=1024.
The plot Tabeled with NalL=512 is precisely Requicha's method. Aliasing is
known to be insignificant for a=1l, as seen by reference to figure 9 and
observing that extrapolation of the straight line section of the exceedance
distribution functior would result in probability values near 1lE-13 at
v=2x/a. The dashed portion of the N=L=512 curve in figure 10 in fact

21
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corresponds to negative probability estimates; these grossly inaccurate

results are due to an inadequate value of limit L, leading to large tail error.

When N is simply increased to 1023, the middle curve in figure 10 results
from Regquicha's method. Again, negative estimates are indicated by the dashed
portion of this curve, although two orders of magnitude smaller than above.
The reasons for these errors have been delineated in (29) et seq.

The bottom-most curve in figure 10 (solid curve) is that obtained by the
method proposed in this report for L = 1023. Exceedance distribution function
estimates in the 1E-10 range are obtained, but the error returns to the 1E-8
range at v=2r/A. No negative probability values occur. Also, by simply
increasing limit L, while keeping FFT size M fixed, the error can be reduced
significantly further, as already witnessed by figure 9.

4. Noncentral Chi-Square

Here the random variable x is given by

K 2
k=1
where {Qk} are constants, and {gk} are independent Gaussian random

variables with zero-mean and unit variance. The characteristic function of x
is

2
£.(5) = (1-iz5) /2 expé%%) , (48)

where deflection d is defined according to

K
d - 2 df. (49)
k=1

We actually consider a more general characteristic function than (48), namely

24
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2 2
f (F) = (1-i28)7" exp(f—f—,-%) - exp({-f—%; - vln(1—1299. (50)

where v is an arbitrary positive real constant. Suppose that we use the
principal value logarithm for An(z), where the branch cut lies along the
negative real axis of the complex z plane (ref. 13, sect. 4.1.1). Then since
the argument of the logarithm in (50) never crosses the branch cut, form (50)
gives the correct characteristic function values automatically for all real§,
and any v.

The probability density function and exceedance distribution function
corresponding to (50) are (ref. 14, 6.631 4)

2 v-1
1 d“+v\ /4V
px(v) =5 exp<; 5 ) <}Ti> Iv_l(dVVﬁ for v >0,

Vil d2+t2 t v-1
1- Px(v) = 2 dt t exp{- —5— (S;) Iv-l(dt) E Qv(d,170 for v > 0. (51)
v

Since the probability density function in (51) is never negative (ref. 13,
sect. 9.6.1), (50) is a legal characteristic function. Also because random
variable x is always positive according to (51), we choose shift b=0. Plots
of the exceedance distribution function, as determined from characteristic
function (50) are displayed for various values of d in figure 11. The values
of L were chosen for each d value so as to control the tail error below the
1E-10 level plotted. Direct calculation of the exceedance distribution
function directly from (51) would be a formidable task for arbitrary v values.

5. Product of Correlated Gaussian Variates

Let

x = st (52)

where s and t are zero-mean unit-variance Gaussian random variables with
correlation coefficient po. The joint probability density function of s and t
is

25
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-1 2,2
Pgy(uv) = (241*‘,2) expE i‘-*-"—'g"-‘ﬂ‘-] . (53)

2(1-0")

The characteristic function of x is then

fx(f) = exp(iPst) =‘£fau dv exp{ifuv) pst(u,v) =

- E-izpwl-pz);z]'m - [1-12s028] 72 [1i1-028] 12, (54)

via repeated use of ref. 14, eq. 3.323 2. The corresponding probability
density function of x is

d 1
px(v) = fﬁr pst(y%) = 1 exp(—ﬁ:—Z) Ko(i‘ﬂ?) for all v, (55)
uv -p

via ref. 14, eq. 3.478 4.

(If we transform this probability density function according to (1) and
use ref. 14, eq. 6.611 9 and ref. 13, eq. 4.4.15, we get precisely (54).
Alternatively, if we transform (54) and modify the contour to wrap around the
branch line along the imaginary axis and then use ref. 14, eq. 3.388 2, we get
(55). Or we can use ref. 14, eq. 3.754 2.)

We actually consider a more general characteristic function than (54),
namely

fx(§) = E-iZos*(l-o2)§2T = exp (un [1-1208 + (1-6%) 32])=

. .l.i?»f{’{ﬂ?;-ivl_;?}z]w . (56)

The mean of this random variable x is given by

u, = 2vp. (57)
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The probability density function corresponding to (56) is

P, (v) = 37 [ ag exol-ipv) 1,05 -

+¢>—1'o/v;:o7.
I § dy exp/—2— - iVZLQ (—17 + yj-v, (58)
Z”Vi'_"? -co-io/ﬁ-—p? 1-5° e e

where we let

y = 1—0 ;-— i 2 . (59)
2
-p
We can move the contour in (58) to the real y-axis, because the branch points
of the integrand are at y = % i/Vl-pz which are outside the path of
integration, since Jo} < 1. Then using ref. 14, eq. 3.771 2 and reof. 13,
eq. 6.1.17, we obtain

1
-1 " 2
px(v) = (‘ﬁ' [(v) Vl-pz) (—'—;—’) exp(iﬁl‘:-z) Kv 1 (-ll‘—_'jp—?) for all v. (60)

- Z

Since this probability density function is never negative (ref. 13, sect.
9.6.1), (56) is a legal characteristic function. If we Fourier transform (60)
via ref. 14, 6.699 12. we get (56) directly.

There is no simple relation for the cumulative distribution function of
this random variable. Nevertheless, it is a simple matter to evaluate
directly from characteristic function (56). The An in (56) causes no problems
since its argument never crosses the branch cut. A plot for v=7.7 and p=-.3
is displayed in figure 12. The rate of decay of the distribution is different
for each tail. The round-off noise is clearly visible at both ends of the
range of v values.
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APPLICATIONS

We now have the capability to handle the following type of statistical
problem in a fairly easy fashion. Consider random variable

K

v
X = Zrkk . (61)

k=1

where {l"k} are arbitrary random variables, statistically independent of each
other, and with different distributions. Power v is arbitrary (except that

v, must be a positive integer for those r, that can become negative}. Let
the probability density function of random variable r¢ be pk(v). Then the

v
characteristic function of rkk is

gk(i) = exp éfr:k) = fdv expéfvvk) pk(v) =
1/v 1/
= %I: j‘g—t exp(igt) t k ka vk) . (62)

If (62) is not integrable in closed form, it can be evaluated by means of an
FFT (one for each k if the probability density functions or v, are all
different). Then the characteristic function of random variable x in (61) is
given by

K
(6 = T {s®)] - (63)
k=1

Now the techniques of this report are directly applicable to (63).

An additional example is afforded by
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2
K K K
::E 2 :EE :EE
k=1 k=1 k=1

where {uk}, {sgk, and {yk} are constants, and {vk} are independent
random variables with arbitrary probability density functions. The
characteristic function of x is

£ (5) = xp(Tx) = |av p, (V) exp(if(Sa v2 + (8,v )% +Svv. 1),  (65)
v KV * 8% kY

where V = (vq, v,, ..., vg). Now since

. \1/2 - 2\
ja .2 . ib
(;—) ‘[;y exp(-iay® + iby) = exp(%;i) for a # 0, (66)
we identify a = §/4, b==52§8kvk, eliminate the square in the exponent,
and express (65) as
f (§) = |dvp (V) exp(iSZ v+ igs Vk)*
X = v Yk Yk

*(%)uzfdy exp< iy, %y 3 8%, -

K
.e\1/2 .
= (%5;) J‘dy exp(— l}@ E {fdvk Py (V) exp(i;(akvf( A yakvk)}, (67)

where

K

V) =TT Pty )} - (68)

k=1

The inner integrals in (67) can either be done analytically or numerically.
Then the remaining single integral on y must be numerically evaluated to find

characteristic function f (¥). As an example, if v is exponentially
distributed

31
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P (v) = a_ exp(-av) for v >0,
then the inner integrals in (67) are w-functions; see ref. 13, ch. 7.

simpler method of handling general quadratic expressions like (64) with
Gaussian V is presented in ref. 15.

32
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SUMMARY

An accurate method for efficient evaluation of the cumulative and
exceedance distribution functions has been derived and applied to several
examples to illustrate its utility. Choice of the sampling increment a
applied to the characteristic function controls the aliasing problem, and
selection of the limit L minimizes the tail error; the effects of both of
these parameters can be observed from sample plots of the distributions and
can be modified if needed. Additionally, shift b must be chosen so as to
yield a positive random variable with probability virtually 1. The number of
distribution values yielded depends on the size of the FFT employed and can be
independently selected to yield the desired spacing in distribution values.
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APPENDIX A. SAMPLING FOR A FOURIER TRANSFORM

Suppose we are interested in evaluating Fourier transform
6(f) =jdt exp(~i2nft) g(t). (A-1)

If we sample at interval a in t in (A-1), and use integration weighting w(t),
we have the approximation to G(f),

g(f) z ‘[ht exp(-i2xft) g(t) S;(t) w(t)

- 6(f)® 1 §, () ® W(f)
3

- %- zﬁ(f- %) @ w(f), (A=2)
n

where infinite impulse train (sampling function)

§5(t) = D8(t-na), (A-3)
n

and @ denotes convolution.

The term

a0 (A-4)
n

in (A-2) is an infinitely aliased version of desired function G(f); this
aliasing is an unavoidable effect due to sampling at increment a. However, to
minimize any further aliasing in (A-2), we would like W(f) = $(f), which
requires w(t) = 1 for all t; strictly, all we need is

w(na) =1 for all n. 1A-5)
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That is, the best weighting in (A-2) is uniform.

As an example, for Simpson's rule, we have weighting

) = o 1 5 1 5 a1+ 3D o 1 - L), (A-6)

which can be represented as samples of time function

w(t) = 1+ exp(int/a) or 1 - 3 exp(int/a). (A-7)
The corresponding transform is

W(f) = J‘dt exp(-i2«ft) w(t) =

~§(F) + 3 8(F -3 or S(F) -3 S(F - 32) . (A-8)

But this window function substituted in (A-2) results in an extra aliasing
lobe in G(f), halfway between the unavoidable major lobes of (A-4) at
multiples of 1/a, of magnitude 1/3 as large. This effect very adversely
affects the quality of G(f) insofar as its approximation to the desired G(f)
is concerned. Thus the best sampling plan in (A-2) is the equal weight
structure of (A-5) when one wants to approximate the Fourier transform of
(A-1). For a bounded region, this is modified to the Trapezoidal rule, i.e.,
half-size weights at the boundaries.

A-2
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APPENDIX B. LISTINGS OF PROGRAMS FOR FIVE EXAMPLES

The following 1istings are programs in BASIC for the Hewlett Packard
98458 Desktop Calculator. The FFT utilized is one with the capability of a
zero subscript and is listed at the end of the appendix. Mathematically, the
FFT programmed is

T
[uly

Z = exp(-i2xmk/M) 2, for 0 <mg< M1,

P
it
o

where the arrays {hg}M'l and {Zm M-1 are handled directly, including the zero-
0 0

subscript terms z_ and Zo'

0

A detailed explanation of the first program below for Chi-Squared random
variables is as follows: 1line 20 specifies the parameter K, where 2K is the
number of squared-Gaussian random variables summed to yield random variable
Xx. Lines 30-60 require inputs L, A&, b, M respectively, on the part of the
user. Line 110 is the input of mean My of random variable x, as evaluated
analytically from characteristic function fx(g). Lines 180-210 specifically
evaluate the characteristic function fy(p) at general point £. A1l of these
lines mentioned thus far require inputs on the part of the user and are so
noted in the listing by the presence of a single ! on each line; the comments
after a double !! are for information purposes only and need not be modified.
This convention is also adopted in the remaining listings.

Lines 220-240 accomplish the collapsing operation of (32)-(33). The
cumulative and exceedance distribution functions are finally evaluated and
stored in arrays X(*) and Y(*) in lines 400-410.

Some further elaboration is necessary for the listing of the Smirnov
characteristic function as given by (42). Since a characteristic function is
a continuous function of real ¥, the square root in (42) is not a principal
value square root, but in fact must yield a continuous function in ¥. In

B-1
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order to achiwe this, the argument of the square root is traced continuously

from §=0 (1ine 110).

If an abrupt change in phase is detected, a polarity

indicator takes note of this fact (line 250) and corrects the final values of

characteristic function fy(g) (1ines 260-270). No problems are encountered
with complex sin(z) since it is analytic for all z.

1@
20
30
40
Se
€0
’e
80
90
190
119
120
130
140
150
160
170
ise
199
200
210
229
230
240
250
260

B-2

CHI-SQUARE CHARACTERISTIC FUNCTION 1-C1-i 2 xi)>~4

K=4 !
L=20@ !
Delta=.07S !
Bs=0 ¢
M=2~8 !
PRINTER IS 0

Limit on

2K=8 degrees of freedom

integral of char. function
Sampling increment on char. function
Shift b

Size of FFT

PRINT “L ="jL,"Delta =";Delta,"b =";Bs,"M =";M

REDIM X<@Q:iM-1)>,¥Y<Q:i1M~1)
DIM K<B:1023>,Y(0:1023)
Mux=2%K

Muy=Mux+Bs

X<(@>=9

¥(0)=, 5%De )t aMuy
N=INT{L/Delta>

FOR Ns=1 TO N
Xiz=Delta*Ns

C=Xi+Xi

cCALL Muic¢1,~C,1,-C,A,B>
CALL Mul(A,B,R,B,C,D
CALL Div(1,08,C,D,Fyr,Fyi)
Ms=Ns MOD M
X(Ms)=X(Ms>+Fyr/Ns
Y(Ms)=Y(Ms)+Fyi-Ns

NEXT Ns

CALL Fft10z(M,X(#), Y (%))

Mean of random variable x

Argument xi of char, fn.
Calcutation of
characteristic

function fyd(xi)d

for K=4

Collapsing

B subscript FFT




270
280
290
300
310
320
330
340
350
368
370
380
390
480
410
420
430
440
450
460
470
480
4990
500
Sle
520
330
540
S350
=11
570
580
S99
6082
619
620
630
€40
€350
660
670
680
690
700
710
720
730
740

PLOTTER IS "GRAPHICS®
GRAPHICS

SCALE o,M,-14,08

LINE TYPE 3

GR1ID Ms8,1

PENUP

LINE TYPE 1
B=Bs*MxDelta {2%PI> N
MOVE B,0

DRAW B,-14

PENUP

FOR Ks=90 TO M-1

T=Y(Ks)/PI-Ks/M

X(Ks)=,5~T 1
Y(Ks)=Pr=,5+T Hl
IF Pr)>s1E-12 THEN Y=LGT(Pr)

IF Pri{=-1E~12 THEN Y®==-24-LGT(-Pr>
IF ABSC(Pr)><1E-12 THEN ¥=-12

PLOT Ks,Y

NEXT Ks

PENUP

PRINT Y<COYiYC1);YC(M=2);Y<¢(M-1)>

FOR Ks=8 TO M-}

Pray(Ks)>

IF Pr>={E-12 THEK Y=sLGT<{Pr>

IF Pri=-=1E-12 THEN Y==-24-LGT(-Pr>
IF ABS(Pr)<1E-12 THEN Y=-12

PLOT Ks,Y

NEXT Ks

PENUP

PAUSE

DUMP GRAFHICS

PRINT LINC(S)

PRINTER IS 16

END

|

SUBR Mul(Xi,¥Y1,%X2,¥2,R,B) !
AsXi*#X2-YI*Y2

BeX1#Y2+X2#Y1

SUBEND

!

SUB Div(X1,¥1,%X2,Y2,A,B) |
TaX2#X2+Y2%Y2
AmCX1#X2+Y18Y20/T
Be(Yi#X2-Xi{#Y2)/T
SUBEND

|

SUB FFL10z(N,X(#>,Y (%))

TR No. 7023

Origin for random variable x

Cumulative probability in X(#)
Exceedance probability in Y(%)

21#822

21,22

! N (= 2~10 = 1024, N=2~INTEGER

@ subscript

8-3
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10 !
20

38

40

58

60

70

80

99

100
110
120
130
140
150
160
170
180
150
200
210
220
230
240
250
260
270
288
290
308
31p
329
330
340
350
360
370
380
390
400
410
429
430
449
450
469
470
480
490
500
510
520
530
540
550
560
570
580
%590
600
610
620

B-+4

GRUSSIAN CHARACTERISTIC FUNCTION exp(-.5 xi~2)

L=7 t Limit on integral of char. function
Delta=.3 I Sampling increment on char. function
Bs=.375#(2*P1/Deltad> ! Shift b, as fraction of alias interval
M=2~8 ., ! Size of FFT

PRINTER IS @

PRINT "L =";L,"Delta =";Delta,"b =";Bs,"M =";M

REDIM X(@:M-1>,Y(@IM-1>

DIM X<0:1023)>,Y(08:1023>
Mux=9

Muy=Mux+Bs

X(@>=8

Y@ >=,5%Delta*Muy
N=INTC(L-Deltad

FOR Ns=1 TO N

Xi=Delta%Ns
A=EXP(-.5#Xi*Xi>

B=Bg#X1

Fyr=R*COSC(B>

Fyi=R*SINCB)

Ms=Ns MOD M

(Mg I)=X(MsI)+Fyr/Ns
Y(Ms)=Y{(Ms)+Fyi-/Ns

NEXT Ns

CALL Fft18z(M,X(*),Y (%))
PLOTTER IS "GRAPHICS"
GRAPHICS

SCRALE ©@,M,-14,0

LINE TYPE 3

GRID Hr8,1

PENUP

LINE TYPE 1t
B=Bs#M*Deltar(2%PI>

MOVE B, 0

DRAW B,-14

PENUP

FOR Ks=0 TO M-1
T=uY(Ks>/PI-Ks M

H(Kg)>=,5-T

Y(Ks)=Pr=,5+T

IF Pr>=1E-12 THEN Y=LGT(Pr>
IF Pr{=-1E-12 THEN Y=-24-LGT{(-Pr>
IF ABS<{(Pr)<1E-12 THEN Y=-12
PLOT Ks,VY

NEXT Ks

PENUP

PRINT Y<(BO;YC(1)3Y(M=-2)3Y(MN-1>
FOR Ks=D TO M-1

Pr=X(Ks)

IF Pr>=1E-12 THEN Y=sLGT(Pr>
IF Pr{(=-1E-12 THEN ¥=-24-LGT(~-Pr>
IF ABS(Pr><1E-12 THEN Y=-12
PLOT Ks,Y

NEXT Ks

PENUP

PAUSE

DUMP GRAPHICS

PRINT LINCS)

PRINTER IS 16

END

|

SUB Ffe1Bz(N,X(#>,Y (%)) !

N (= 2+10 = 1024,

Mean of random variable x

Argument xi of char. fn.
Calculation of
characteristic

function

fydxil

Collapsing

8 subscript FFT

Origin for random variable x

Cumulative probability in X{(¥)
Exceedance probability in Y{(#)

N=2~INTEGER

0 subscri
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130
140
158
160
178
180
198
208
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238
248
259
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270
280
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400
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! SMIRNDY CHARACTERISTIC FUNCTION [s/5in{(s>]1~1/2 where s=(1+i)sqrixi)

L=3000 !
Delta=1 !
Bs=0 t
M=2~8 |
PRINTER IS ©

Limit on

integral of char.
Sampling increment on char. function
Shift b

Size of FFT

function

PRINT "L ="jL,"Delta =";Delta,"b =";Bs,"M =";M

REDIM X(B:M=~1>,Y<(@8:M-1>
DIM X<(9:10823>,Y(@A:1823>
Mux=1-/6

R=0

P=1

Muy=Mux+Bs

X(8>=0
Y(@>=,5%#Delta*Muy
N=INT(L-Delta>

FOR Ns=1 TO N

Xi=llelt a*Ns

A=SAR(Xi>

CALL Sin(A,AR,B,C>

CALL Div(A,A,B,C,D,E>
CALL Sqr(Dd,E,AR,B>

Ro=R

R=RATN(B/R)

IF ABS(R-RoJ)>1.& THEN P=-P
Fyr=A*P

Fyi=B*P

Ms=Ns MOD M
X(Mg)I)>=X(Ms>+Fyr Ns
Y(Ms)=Y{Ms)+Fyi Ns

NEXT Ns

CARLL Fftioz (M, X(*>,Y( (%))
PLOTTER IS "“GRRAPHICS"
GRAPHICS

SCALE o,M,-14,8

LINE TYPE 3

GRID Ms/8,1

PENUP

LINE TYPE 1
B=Bs#M*Delta/(2%P1>
MOVE B,0

DRAW B,-14

PENUP

FOR Ks=8 TO M-1
T=Y(Ks)>/PIl-Ks/M
X(Ksd)=,5-T
Y(Ks)=Pr=,5+T

IF Pro=1E-12 THEN Y=LGT{(Pr>

IF Pr{=-1E-12 THEN Y=-24-LGT(-Pr>

IF ABSC(Pr)<1E-12 THEN Y=-12
PLOT Ks,Y
NEXT Ks

cvs e cmw A e A dEw e sam tam e

Mean of random variable x
Argument of sgquare root
Polarity indicator

Argument xi of char. fn.
Calculation

of

characteristic

function

fylxi)

Collapsing

B subscript FFT

Origin for random variable x

Cumulative probability in X{(#%)
Exceedance probability in Y(*)
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$30
540
=51
560
570
=11
590
c8ae
618
620
630
640
6350
660
670
680
699
708
710
720
730
740
fg-1-)
vea
778
780
7958
soe
810
820
g3a
840
850
86@
87e
88e
890
9ee
g9ie
920
930
940
958
960
970
980
998
1000
1010
1820
1030
1049

B-6

PENUP
PRINT YC@);YC1);YCM-2)3YCM-1)
FOR Ks=@ TO M-1

PrexX(Ks)

IF Prow1E-12 THEN Y=LGT(Pr)
IF Pri{=-1E~12 THEN Y=-24-LGT(-Pr)
IF ABSCPr)><{1E-12 THEN Y=-12
PLOT Ks,Y

NEXT Ks

PENUP

PAUSE

DUMP GRAPHICS

PRINT LINCS)

PRINTER IS 16

END

]

SUB Div(X1,Y1,X2,Y2,R,B) I 21722
TuX2#X2+Y24Y2

Ra(X1#X2+YiaY2)/T

Be(Yi#¥2-X1%Y2)/T

SUBEND

I

SUB Sqri(X,Y,R,B> | PRINCIPRL SQR(Z)
IF %<>@ THEN 8068

A=R=SARC. SHARS(YI)D

IF ¥<@ THEN B=-3

GOTO %10

FeSQR(SAR(X%X+Y2Y))

T=,S2RATNC(Y X))

A=F#COSCT

B=F%#SINCT)

IF X>0 THEN 910

T=f

A=-3B

B=T

IF ¥Y>=9 THEN 910

A=-f

B=~B

SUBEND

]

SUB Sin(X,Y,R,B) I SINCZ)
E=EXPCY)

Aw,  SHSINCXI*#CE+L/ED

IF RBS(Y><.1 THEH 999

Su,S#(E-1/E)

GOTO 1010

Suyay

Su¥Y%#(120+S#(20+5)>>/120

B=COS(X)#$§

SUBEND

t

SUB FFe1@z (N, XC(#),¥YC(%)) ] N (= 2~18 = 1024, N=2~INTEGER

0 subscri




18

20

30

409

58

60

70

8@

90

100
110
120
139
140
150
160
170
180
190
200
210
229
239
240
250
269
270
280
298
308
310
320
33@
340
359
369
378
380
39e
400
410
420
430
440
450
460
479
480
4350
See
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NON-CENTRAL CHI-SQUARE CHARACTERISTIC FUNCTION

expli d~2 xi 7 8} 7/ s5°nu

Nu=2,.7?7

Ds=3

L=500
Delta=.05
Bs=0

H=2~8
PRINTER IS @

where s = 1-1 2 xi
Pouwer law nu
Deflection d
Limit on integral of char. function
Sampling increment on char. function
Shift b
Size of FFT

PRINT "L =";L,"Delta =";Delta,"b =";Bs,"M =";M

REDIM X(QiM-1>,Y(BiM-1)
DIM X(@:10823>,Y(0:1023)

D2=Ds*Ds
Mux=2#Nu+D2
Muy=Mux+Bs

X(a>=g
Y(@)>=,5%Delt a®Muy
N=INTC(L/Delta)
FOR Ns=1 TO N
Xi=DeltaxNs
T=Xi+Xi

CALL Div(@,D2%#Xi,1,~-T,R,B>

| Calculate parameter
{ Mean of random variable x

i1! Argument xi of char. fn.
I Calculation of
I characteristic

CALL Log(l,-T c, v ! function
CALL ExpC(R-Nu#*C,B-Nu#*D+Bs#Xi,Fyr,Fyi> ] fylxid
Ms=Ns MOD M 1Y Collapsing
K(MsO>=X(Ms)+Fyr/Ns

Y{Med)=Y(Ms>+Fyi/Ns

NEXT Ns

CALL Ffel@z(M, X(%),Y (%))

PLOTTER 1S "GRRPHICS"
GRAPHICS

SCALE 0,M,-14,0
LINE TYPE 3

GRID Mr8,1

PENUP

LINE TYPE 1
B=Bs*M*Deltar(2%PI)
MOVE B, 0

DRAW B,~-14

PENUP

FOR Ks=0 TO M-~}
TaY(Ks)>/Pl~-Ks /M
X{Ks) >=,5-T
Y{Ks)=Pr=.5+T

Il @ subscript FFT

It Qrigin for random variable x

11 Cumulative probability in X{#)
1l Exceedance probability in Y(#2

IF Pro>=iE-12 THEN Y=LGT(Pr
IF Pr{=-1€-12 THEN Y=-24-LGT(~-Pr)
IF ABSC(Pr)>{1E-12 THEN Y=-12

PLOT Ks,Y
NEXT Ks
PENUP

B-7




B-8

ﬁ—

TR No. 7023

Si1@ PRIKT Y(@)>;YC(1);Y(M-2);Y¥(M-1)

Sz2o FOR Ks=8 TO M-1

538 Pr=X(Ks>

540 IF Pr>=1E-12 THEN Y=LGT(Pr)

SSe IF Pr{=-1E-12 THEN Y=-24-LGT(-Pr)

Sea IF ABSCPr><1iE-12 THEMN ¥Y=-12

Sr7e PLOT Ks,Y

580 NEXT Ks

S59%e PENUP

680 PAUSE

618 DUMP GRAPHICS

620 PRINT LINC(S>

630 PRINTER IS 16

640 END

€5a !

660 SUB Div(X1,Y1,X2,Y2,A,B> v 21,22
670 TaX2#X2+Y2%Y2

€80 A= (X1 #X2+Y1%Y20 /T

690 Bs(Y1#X2~-K1%Y25/T

7ee SUBEND

7i@ !

720 SUB Exp(X,Y,R,B> 1 EXP(2)
730 T=EXP(X)

740 R=T*COS(Y)>

750 B=T*SINCY)

760 SUBEND

770 !

vga SUB Log(X,Y,A,B> ! PRINCIPAL LOG(Z>
799 A=, S*LOG(X#X+Y%Y)

800 IF X<>@ THEN B30

810 B=.S*PI#SGNCY)

820 GOTO 850

830 B=ATNC(Y - %)

840 IF X<8 THEN B=B+Pl#{{-2%(¥<@))

85@e SUBEND

860 !

§7va SUB Ffe10z(N,X(*)>,YC(%)> I' N <= 2~10 = 1924, N=2~INTEGER

8 subscriq




19

28

38

4@

Se

€8

79

80

98

108
110
120
130
140
1Se
169
1?70
180
190
2060
219
220
230
240
258
260
2ve
280
298
300
310
320
330
340
350
360
370
380
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! GAUSSIAN PRODUCT CHARARCTERISTIC FUNCTION ¢56)

Nu=?7.7 ! Power Nu

Rhao=~,3 ! Correlation coefficient

L=5 ' Limit on integral of char. function
Delta=.086 ! Samplting increment on char. function
Bs=.5%(2%P[/Delta) I Shift b, as fraction of alias interval
M=2~8 I Size of FFT

PRINTER IS @

PRINT "L ="jL,"Delta =";Delta,"b =";Bs,"M =";M

REDIM X{(@:M-1),Y<(@:M~-1>

DIM X(@:10235,Y¢0:10823)
Ti=1-Rho*Rho ] !
T2=2%Rho !
Mux=2#Nu*Rho )
Muy=Mux+Bs

X¢a)=0

Y(@)=,5+Delta*Muy

N=INT{(L Delta>

FOR Ng=1 TO N

XKi=Deltax*Ns tl
CALL Log(l+T1#Xi*Xi,~-T2%Xi,A,B? !
CALL Exp(-Nu*A,Bs#Xi-Nu*B,Fyr,Fyi)!
Ms=Ns MOD M 11
X(Ms)=X(Ms)>+Fyr Ns
Y(Msl=Y(MsI)+Fyi~-Ns

NEXT Ns

CALL Ffe10z(M,¥(%),Y (%)) |
PLOTTER IS "GRRPHICS"

GRAPHICS

SCALE o,M,-14,0

LINE TYPE 3

GRID Mr8,1

PENUP

LINE TYPE 1

B=Bs#M*Delta (24%P1) t
MOYE B, 8

DRAW B,-14

PENUP

Calculate
parameters
Mean of random variable x

Argument xi of char, fn.

Calculation of
characteristic function fyixi>
Collapsing

B subscript FFT

Origin for random variable x

B-9




TR No. 7023

398
400
410
428
438
449
458
460
479
480
490
See
5@
520
S38
540
559
11
Srveo
Sse
598
680
618
€20
638
€48
€508
€68
€790
€80
690
700
710
720
730
740
758
760
770
780
790

B-10

FOR Ks=8 TO M-1

T=Y(Ks)>/PI-Ks/M

H{Ks)=,5-T (]
Y{(Ks)=Pr=,5+T t
IF Pr>=1E-12 THEN Y=LGT{Pr

IF Pr{=-1E-12 THEN Y=-24~-LGT(~Pr)
IF ABSC(PrI><1E-12 THEN Y=-12

PLOT Ks,¥

NEXT Ks

PENUP

PRINT ¥Y<B)>;¥C(1);Y(M=2>;Y(M=-1)

FOR Ks=8 T0 M-i

Pr=¥(Ks?

IF Pr>=1E~-12 THEN Y=sLGT(Pr)

IF Pri{=-1E-12 THEN ¥=-24-LGT(-Pr>
IF ABSC(Pr)<{1E-12 THEN Y¥Y=-12

PLOT Ks,¥

NEXT Ks

PENUP

PAUSE

DUMP GRAPHICS

PRINT LINC(S)

PRINTER IS 16

END

]

SUB ExplX,Y,R, B> {
T=2EXP(X)

A=T%*COSCY)

B=T#SINC(Y)

SUBEND

1

SUB Log(X,Y,HA,B> {
A, SHLOG(A#X+Y#Y)D

IF X<>8 THEN 750

Bx, S#PI#SGNCY)

GOTO 770

B=ATNC(Y X))

IF X{B THEN B=B+Pl#(1-2%#(¥<{@8))

SUBEND
]

Cumulative probability
Exceedance probability

EXP(2)

PRINCIPAL LOG(2Z?

SUB Fft1@z(N,®(*),Y (%)) t N <= 2~10 = 1824, HN=2~INTEGER

in X(%)
in Y(%)

P subscript
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10 SUB FFe1Bz(N,N(*¥D V(%30 f N = 218 = (824, N=2~INTEGER 8 zubscript
20 DIM C(@8:256)>

3e INTEGER It,12,13,14,15,16,17,18,153,118,J,K

48 DRTA 1,.999931175283,.93939247D01839, .99983u5R1796,.993698818496,,93952934175
81, .999322384588, , 939977727V 753,.9987954562085, . 992475588573, .99811&112908

58 DATA ,997723056&44, ,997290456679, . 996220299291, .996312612183,,.99576741446€8
y+ 395184726672, .994564570734,,9939069780082, .393211949235,.992479534599

e DATR .9917B9753658'3,.998302€635428, .990B58210262,.989176589965,.988257567731
y 987301418158, .986388897245, ,985277642389, ,984210092387, .7331685487431

70 DATA ,981963865110@,.938078528084083, .37985697°65685, .9783173708720,.9770828142:58
s« 375702136839, .9743393827836, .9729399522086,.9371503890986,.378@831253195

30 DATA .958522894274, .966376471045, .960394441698, ., 96377€865795,.962121484269
» » 260438519416, .958703474896, .956940335732, .955141168385, .953306640354

398 DATR .9514358289693,.343528188593,.947585371Q18,.945687325381,.943593453162

»y+ 941544065183, .939459223602, ,937339811913,.9351535089939, .9329927986835

166 DATR .93B766961DH79,.9285D6B80A4732, .9326210242138,.923879532511,.921514839342
y« 2191123851698, .91667930859921,.9142897557084,.91178603208085,.90891679830891

110 DATA .986595784515,.983989292123, .901343847846, .898674465694, .8959€6€243758
y - 893224301196, .898448723245, .88763%620483,.884797898431,.881921264348

120 DATA .879812226429,.57687005%41935,.873034978418,.870086991109, .86784624551¢
y» 863972856122, . 850856938638, ,8577285100800, .854557988365, .851355193185

130 DATA .84812034480683,.8448535652508, .841554977437,.838224785555, .834862874386€
y: 8314696123683, .828845845258, .324569302785,.521182514991,.817358481315¢2

140 DRATA .814036329706,.5818457198253,.806847553544, .883207531481,.79%537269188
y « 735836904669, . 732106577388, .783346427627, .784556597156, .7808737228572

159 DATAR .77€£888465k673,.7736104533€3,.7691083337646,.765167265622,.761202385484
y« 7S7208846505, . 753186799044, , 7493136394523, .745857785441,.7408951125355

168 DATA .7326816568877,.732654271672,.728464390448,.724247082951,.7200082507961
»» 715738825284, .711432195745, .707106721187,.782754744457,.698376245409

17@ DATA .693971460390, .689548544737,.68350883667773,.6808600997795,.676032703575
y 671558954847, .666399922304, , 6624157775908, .637806693297,.653172842954

180 DATA .648514401022,.643831542890,.639124444864,.634393284164,.629638238%15
y 624859488142, . 620057211763, .6152315%05581, .6183228086276,.6855110841404

190 DATR .6008616479334,,595699304492,.5%07597414859,.585797857456,.58@813955896
y-575808191418,.5787308745887,.565731818784, . 5608661376197, .555570233020

288 DATA .556457972937,.5945324988422,,5940171472730,.534997619887,.5293072624686
s« 524389682678, .519355990166,.514102744193, .508830142543, .58333838372¢6

219  DATA .493822766£973,.492898192230,.487550160148,.482183772079,.476739230063
y 471396736826, .465976495768, .46P538710958, ,455@83587126,.449611329655

220 DATA .444122144576G,.438616238539,.433893818853,.427555093430,.422800270500
y 4164295600898, .4108431719858, .4052413140085,.399624199846,.3939920408061

2309 DATA .388345046699,.382683432365,.377007410216,.371317193952,.365612997385
y + 359895036535, . 354163525420, .342418680249, ,.342660717312,.336889853392

249 DATA .3311863085760,.3253108292162,.319502030816,.313681740@399,.387349640042
y» 382005949319, .296158888244,.290284677254,.284407537211,.278319689383

258 DATA .272621355450,.266712757475,.260794117915,.2548656596085, .245927605746
y + 242988179983, .23782360855994, .231858108281, .225083911360,.2191012409157

268 DATA .2131108319916,.207111376192,.201104634842,.195096322016,.1890968664130
y» 183839887955, .177094220412,. 170961382768, .,164913120490,.158858143334

279 DATA .152797185258,.146738474455,.148658239333,.134580708507,.128458118794
,+122410675199,.1163186308912,.1198222207294,.104121633872,.9806171483296E~1

230 DATA .919089564371E-1,.857973123444E-1,.796824379714E-1,.7356456233997E~1,.
674439195637E-1,.613207363022E~1,.551352443497E-1,.490676743274E~1

298 DATA .429382569349E-1,.368072229414E-1,.386748831766E-1,.245412285229E-1,.
184067299058E-1,.122715382857E~1,.613588464913E-2,0

306 READ C(#%)

316 K=1824-N

328 FOR J=0 TG N-4

330 C(I)=CK*ID

340  NEXT J

3309 Hi=N/4 B-1\

368 N2s=Ni+1

378  N3=N2+1
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8o
398
409
4.0
420
430
440
459
4€0
478
480
498
5849
510
528
530
540
5506
568
570
580
$90
15%%1%]
€10
€28
£30
640
58
650
674
683
690
78
218
720
738
740
750
760
770
780
790
800
819
820
830
849
850
860
870
880
890
900
910
928
930
940
950
960
970
980
990
1000

B-12

Ne4=N1+N3
Log2n=INT(1.4427%#L0G(NY+.5)
FOR I1=1 TO Log2n
1232~CLog2n-11>

I13=2#%12

I4=N/13

FOR 1S=1 70 12
I16=CI5-1)%1d4+}

IF 16<=N2 THEN S0
N6=-C(N4~16~1)
N?=-C(I6-N1~-1)>

GOT0 520

N6=CCI6-1)

N?=-~C(N3~-16~-1)

FOR 17=8 TO N-I3 STEP I3
18=17+15

I9=18+12

N8=X(18-1>-X(]9~1)
NS=Y(I8-1)~Y(I9~1)
XCIB=17=X(18-1)+X(]9~1)
YCIB-10=YCI8-1)+Y(]9~1)
X(I9-1>aNE6#N8-N7%N9S
Y(I9-1)=NE#NI+N7#NB

NEXT 17

NEXT IS5

NEXT 11

Il=log2n+!

FOR 12=1 TO i@

C(l2-1>=1

IF 12>Log2n THEN 690
C{12-10=2~CI1-12>

NEXT 12

K=1
FOR
FOR
FOR
Foe
FOR
FOR
FOR
FOR

It=1 TO C(9
12=11 TO C(&
I3=12 70 C<?
14=13 T0 C(6>
IS=14 TO C(5)
16=15 TO C(4>
1?7=16 TO C(3>
I8=17 TO C(2> STEP C(3»
FOR I9=18 TO C<(1> STEP C(2>
FOR 118=19 TO C<(@> STEP C(1>
J=110

IF K>J THEN 890

AReX(K-1)>

KCK=15=XK(J-1)

X(J-1>=R

A=Y (K~1)

Y{K=1>=Y(J~1)

Y¢(J-1)=R

K=K+1

NEXT I1@

NEXT 19

NEXT 18

NEXT 17

NEXT 16

NEXT IS

NEXT 14

NEXT 13

NEXT 12

NEXT I

SUBEND

STEP
STEP
STEP
STEP
STEP
STEP

(9>
c8>
C<?>
cder
Csd
C<4)

—_—

2~19=1024
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Exact Performance of
General Second-Order
Processors for
Gaussian Inputs

A. H. Nuttall
ABSTRACT

The characteristic function of general second-order processors with
nonstationary nonzero mean Gaussian inputs is derived in closed form.
Three classes of processors are considered; in the first, the decision
variable is the sum of K independent terms, each of second-order form
involving two statistically dependent Gaussian random variables; the
second class of processor is a narrowband crosscorrelator of arbitrary
Gaussian processes, with accumulation of K independent lowpass filter
output samples; in the third class, the decision variable is a general
quadratic-plus-linear form of M random variables, all statistically
dependent on each other. Specializations to various forms of weighted
energy detectors and correlators are made. Also, the characteristic
function for the first class of processor subject to fading is evaluated.

Programs for evaluating the cumulative and exceedance distribution
functions of all three classes of processors are given and have been used
to plot representative examples of performance. A comparison with a
simulation result corroborates the analysis and program of the first
class of processor.

Approved for public release; distribution unlimited.
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EXACT PERFORMANCE OF GENERAL SECOND-ORDER
PROCESSORS FOR GAUSSIAN INPUTS

INTRODUCTION

The performance of weighted energy detectors and correlators for
processing deterministic and/or random signals in the presence of
nonstationary noise is a topic of frequent interest. Most often, a second-
moment approach is adopted, whereby the means and variances of the decision
variable under the various hypotheses are evaluated and employed in a central
limit assumption to get approximate false alarm and/or detection probabilities.
This approach is suspect for small false alarm probabilities or for cases
where the decision variable is not the sum of a large number of independent
random variables all of comparable variance.

A recent technical report [1] has presented an accurate and efficient
method for evaluating cumulative and exceedance distribution functions
directly from characteristic functions. This approach is very fruitful for
determining the performance of general time-varying second-order processors
with nonstationary nonzero mean Gaussian inputs, since the characteristic
function of the decision variable can be evaluated in closed form in these
cases.

We will consider three classes of processors and derive the
characteristic functions for all three decision variables in closed form. The
first two classes are special cases of the third, but are of interest in their
own right, since they include and immediately reduce to many practical
processors in current use. Also there is no need to solve for the eigenvalues
and eigenvectors of a general symmetric matrix that is encountered in the
third more-general class of processors. Rather, the characteristic functions
are given directly in terms of specified processor weights and input
statistics.

There has been considerable effort on this problem in the past; for
example, see [2,3] and the references listed therein. Most of the lengthy
analytical derivations and results have been aimed at getting workable
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expressions for the probability density function and/or cumulative
distribution function. Here, when we consider our three classes of
processors, we encounter characteristic functions which are more general than
that given in the recent paper for a filtered analog processor [3, eq. 51;
thus specialization of our results will yield those of [3] and the references
listed therein. The technique employed here to proceed directly to the
cumulative and exceedance distribution functions is a numerical one, as given
in [1], and does not require any series expansions or analytical manipulations
at all. The asymptotic behaviors of the cumulative and exceedance
distribution functions on both tails are easily observed and will be found to
corroborate the comment made in [3, p. 673] that these tails are generally
exponential rather than Gaussian; however, there can be a considerable
transition region.

The programs listed in the appendices require the user merely to input
his processor weights, signal constants, and noise statistical parameters in a
series of data statements at the top of the program, and to select values for

L, limit on integral of characteristic function,

A, sampling increment on characteristic function,

b, additive constant, to quarantee a positive random variable, and
Me, size of FFT and storage required.

Selection of L and A is largely a matter of trial and error and is amply
documented in the examples in [1].
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A PARTICULAR SECOND-ORDER PROCESSOR

Before we embark on the analysis of the particular second-order processor
of interest in this section, we solve the following simpler statistical
problem. Let s and t be real jointly-Gaussian random variables wi.: means
Moy My, standard deviations Og> Ot and correlation coefficient p;

thus s and t are statistically dependent. Consider the random variable

x = as? + bt? + cst + ds + et, (1)

where weightings a, b, ¢, d, e are arbitrary real constants. The
characteristic function of random variable x is defined by*

fx(}) = exp(i¢x) = exp(ig(as2 + bt27+ cst + ds + et)) =

= .fS‘du dv exp(i;(au2 + bv2 + cuv * du + ev)) pst(u,v), (2)

where the joint probability density function of s and t is

o

2 2
e o N o e .
pst(u,v) = <?n LR l—p‘) exp |- S t 3 t . (3)

2(1-p°)

b

Substitution of (3) in (2) and use of the double integral

2 2
S‘fdx dy exp[—axz - 3_y2 + 2yxy * ux + \,y] = LS I—Bu + av” + 2yuv

exp >
1’u3_72 L_ 4(aB~y“)

* Integrals without limits are over («,+),
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(where sub r denotes the real part of complex constants a, 8, vy, u, v)
yields, after an extensive amount of manipulations, the characteristic
function of random variable x as the compact closed form expression

. 2
: 2

-1/2
£ (8) = (é - 1§D, -§20é> exp [i§

The required real constants in (5) are given directly in terms of the
processor weights and statistical parameters as

D1 = 2(aa§ + bai + Cpasot) .
D, = (4ab - c2)(1 - pz)ogdi ’
N, = am2 + bm2 +cemm, + dm_ + em
0~ s t st S t
2.1 22,1 22

Ny = (4ab - ¢ )(7 moy * 3 Mmoo — oMM o ot)

+ (2ae - cd)as(mtaS - °m5°t) +

*+ (2bd - ce)o,(mo, - °mt°s) -

- (%- dzoz + %— ezoi + depcsot) ,
N2 =z - (ae2 + bd2 - cde)(l—pz)aioi . (6)

For later reference, the mean and variance of x follow from (5), upon
expansion of fn f (§) in a power series in ¥, as

ux = Ng *'% Dy
2 142
o) =3 D] * 2NyD; - D, - 2N;. (7)
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(When Dy = 0 in (6), it can be shown that D, < O; thus characteristic
function (5) never possesses any singularities along the real § axis.)

Second-Order Processor

Now let x be the sum of K independent terms of the form of (1):

2 2
(aksk + bktk * oSt Ydes t ektk) . (8)

x

I
»
1l r\/\;<
ot

where real constants a,, by, ¢, dy, e, can depend arbitrarily on k,

and where means* Moy Myps standard deviations Ogk» Otk» and corre-
lation coefficients p, are unrestricted (except that og, > 0, oy > 0,
lok[ < 1). The pair of random variables Sks by is statistically
independent of the pair Sps t, for all k # n. Thus random variable x is
composed of a sum of K groups of random variables, where each group is
statistically independent of every other group, but each group itself
contains two statistically dependent random variables.

This processor in (8) is the general form of interest in this section.
It can be time-varying when the weights {ak, bes Cy» dk, eg} vary
with k, and nonstationary when the statistical parameters {msk, Myps

Osk, Itk pk} vary with k.

The characteristic function of (8) follows from (5) as

K "'1,2
£.6) = [T {1 - %0, (k) _gzuz(k)} *
k=1
& Ng(k) ~ T8N (k) - ;ZNZ(k)
* exp 1§§ 2 . (9)
) 1 - i§Dy(k) - §D,(k)

* These means can be interpreted as the deterministic signal components of
the channels s and t, if desired. 5
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where the identification of Dl(k), etc., is obvious from (6). Only one
(continuous) square root and one exponential per ¥ value is required in (9),
regardless of the number of terms added, K. The mean and variance of random
variable x in (8) follows from (9) as

K
y, = k21 [Mt) + Dl(k)],

K
ai - k§=1 [%- D"i(k) + Mg (k) Dy (k) - D, (k) - 2N1(kﬂ. (10)

Any analytical attempt at determining the probability density function or
cumulative distribution function corresponding to characteristic function (9)
would be a formidable task indeed. However, it is a very simple task via the
method of [1] to get accurate numerical values for the cumulative and
exceedance distribution functions. The program listing in appendix A
accomplishes this task, based upon characteristic function (9) and the
constants listed in (6). A1l the weights {ék, bk’ Cys dk’ eg}? and
statistical parameters {msk* Mpgs Igks Ttis pé}‘are arbitrary. Observe
that (9) is far more general than the characteristic function considered in
[3, eq. 5], which itself required a very lengthy analytic treatment to get the
probability density function and cumulative distribution function. In fact,

there is little hope of getting any tractable analytic results for (9) when K
is greater than 2.

Special Case 1

Suppose weightings a, b, ¢, d, e in (8) are independent of k and that

statistics ogs 0ts p are also independent of k. The decision variable x
in (8) then simpiifies to

K

X = ;EE(asf + btﬁ *esety t ds, * etk) . (11)
k=1
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Then Dl’ 02, N, are independent of k. If we define mean parameters

K K K
2 2
”20‘2 Mg » Moz = Emtk > ”11“'2’“51( Mek
k=1 k=1 k=1
K K
Mo = E Mo+ Mop = 2 Mg 0 (12)
k-‘=1 k:l

the characteristic function of x in (9) then takes the simpler form

«/2 Ny - BN, - FON,
. 2 oMo - TN -5 N,
£ (§) = G - i¥Dy - D> exp |i . (13)

where D1 and D2 are still given by (6), and
Ny = aM,. *+ bM

+ cM., + dM

0 20 02 11 10 o1
Ny = (4ab - c?)(3 oMy * 3 oMgp - sogaMyy) ¢
+ (2ae - cd)cs(csM01 - ootMlo) +
+ (2bd - Ce)“t(°tM10 - poSMOI) -
~ K (% d2o§ + % 6202 + deoosot) .
Né = - K(ae2 + bd2 - cde)(1 - °2)°§°§ . (14)

{The choice of K = 2 and Ny = 0 in (13) corresponds to the form given in

#

[3, eq. 5].) Observe that the characteristic function in (13) (and therefore
the performance) of the processor in (11) depends on the means {msg} nd

Ehtk} only through the parameters {Mij} defined in (12). The mean and variance

7
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of random variable x in (11) follow from characteristic function (13) as
u_ = N, + 3 KD

N0 7

2

[AS]

+ 2N.D, - KD

001 5 = 2N1 . (15)

O] —

0x=

Special Case 2

Let us also assume d = 0, e = 0 in (11) above; then the pertinent
decision variable is given by

K

x= > (as? + bt + cs b)) (16)
k=1

D, and J, are still given by (6), and there follows from (14),

' 2.1 2 1 2
Np = (4ab - c)(5 oMoy + 7 o Mgy = po o Myy)
Ny =0 . (17)

The characteristic function of x is given by (13), with Né = 0. The mean
and variance of x in (16) are given by (15).

Fading for Special Case 2

Let the mean. parameters {Miil in (12) be subject to slow fading; i.e.,
replace

where power scale factor r has probability density function

8
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v
p.(u) 3'7%37 Wl e™  for w0, v>0;
—_ ~11)}
F a1, 02 =1, X(n) = 135%%L for n > 1. (19)

This form of fading is encountered in diversity combination receivers; see,
for example, [4, eq. 9 et seq.] and [5, eq. 24 et seq.]. Then (13), (17), and
(18) yield the conditional characteristic function, for a specified r, as

/2 N. - 1SN
. 2 . 0 1

f = (1 - 1§Dy -€°D . 20

x(;h') ( i§D, - 2) exp }ifr L ifnl B 5202 (20)

Weighting (20) according to the probability density function in (19), and
performing the integral, there follows, for the characteristic function of the
decision variable x in (16), the result

K
v —
(; - i§D, - sz;> 2
f (5 = . (21)
. ' 2 ' v
6. - 1?(01 + Nolv) -f (02 + Nl'va
(The limit of (21) as v++eis again (13) with Né = 0, as in (17); this
agrees with the fact that the corresponding limit of the probability density

function in (19) is pr(u) = $§{u-1).) The mean and variance of x in (16)
follow from characteristic function (21) as

Co
u = Nog + 7 KDy
of =-% Kof + 2N(')D1 - KD, - 2Ni + Nézlv i (22)

Observe that mean w, is independent of v, the power law in fading (19). A
program for the cumulative and exceedance distribution functions corresponding
to characteristic function (21) is given in appendix B.
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SPECIAL FORMS OF SECOND-ORDER PROCESSOR (8)

Before embarking on the analysis of the other two classes of processors,
we will explicitly detail some of the special forms that processor (8) reduces
to, under particular selections of the weightings and statistical parameters.
A rather broad collection of typical processors will be seen to be included.
In the following, any unspecified weights {ak, bk’ Cys dk' ek} are zero,
and any unspecified statistical parameters that do not appear in the final
char:cteristic function are irrelevant.

I. Gaussian

K
k=1

K
W -5 7S o

II. Chi-square of K Degrees of Freedom

ak=1, mSk=0’ =l

95k

K
=S
k=1
£, = (1 - i52) ™2

10




ITI. Non-Central Chi-Square (Qy Distribution if K = 2M)

Qg =1, og =0

TR 7035

k=1
K
. £\ ‘5'5?5 Mok
f = (? - i%2¢ exp —
X ¥ S, ,_1 - f§202
IV. MWeighted Energy Detector
a #0, d #0
K
x= D (a5t * 45
k=1
K -3 K am?2+dm, +ifids 2
. 2 . k'sk k sk 2k sk
f (¥ = {i - if2a.0 } exp |
B =TT k'sk 5> 1- i§2a.0 °
k=1 k=1 k sk

V. Weighted Cros--Correlator

ck#o

K
k=1

= 20, P9 Otk?

(=]
fu—
VY
=
S’
I

2 2. 2 2
(1= pdogiops

=/
n

—~—

F

~—
[}

11
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No(k) = c mgmy, s
21 2 2.1 _2 2
Np(k) = (5 mge apye + 7 Mok = oMgMey 919y ) s

Nz(k) =0

Characteristic function fx(sj is given by (9).

VI. Two-Channel Energy Detector

a # 0, b #0

K
n= 2 (3 )

k=1
D,(K) = 2(a 0 % + b ),
Dy(k) = Bab, (1 - ol)agfoyy -
No(k) = agngg + by,
Ny(K) = dab (3 mZo l + 3 mbo l — oymomioon),
Ny(k) = 0.

Characteristic function f.(¥) is given by (9). A simple application of this
particular processor was encountered in [6, eqs. 25-26].

12
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VII. Two-Channel Energy Detector and Cross-Correlator

akaéO, bk#O, ck#O

K
2 2
X = 2 (aksk + bktk + cksktk)

k=1
D, (k) = 2(a0. 2 * bo,2 * ¢ o 0 0p)
1 = A%k k%tk kPk%sktk’
2 20 2 2
Dy(k) = (4a.by - ) (1 - plogop, s
N(k)—am2+bm2+cm m
ofk) = am * bem *Cmo My s
201 2 2.1 2 2
Ny(k) = (4, - cpdlz mpay, + 5 Mo - oM Myogoy)

Characteristic function f (¥) is given by (9).

13
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NARROWBAND CROSS-CORRELATOR

5(t) * ny(8)

Lowpass  Sample, Weight, v
Filter and Accumulate

sz(t) + nz(t)

Figure 1. Narrowband Cross-Correlator

The processor of interest in this section is depicted in figure 1. Input

signals s;(t) and sp(t) are arbitrary deterministic narrowband real waveforms:
55(t) = Re{gj(t) exp(i2sf t)} = A;(t) cos(2sf t + Py(t)) =
= aj(t) cos(Zufot) - bj(t) sin(waOt) for j = 1,2, (23)
where input signal complex envelope
(t) = A, (t iP. = a, + ib,
33( ) = A;(t) exp(wPJ(t)) a;(t) ib,(t) (24)
in terms of polar or rectangular low-frequency components, respectively.

Input noises ny(t) and ny(t) are zero-mean correlated narrowband
jointly-Gaussian processes which may be nonstationary:

nj(t) = Re{gj(t) exp(ianoti} = xj(t) cos(waOt) - yj(t) sin(2nf0t), (25)
where noise complex envelope
gj(;) = xj(t) + iyj(t) for j = 1,2. (26)

The statistics of the input noise complex envelopes are arbitrary:

14




TR 7035

n

0] * - 20}

,(t)

0] = 25

S—
ﬂl(t) gz(t) = 20705y, Where y = o+ ix = |y|exp(id),

gdlti gm(ti =0 for all j, m. (27)

The quantities o, o,, vy can all vary with time t, for nonstationary noise
processes. There follows, for the statistics of the in-phase and quadrature
components defined in (25),

2 2 2 —

XY =¥y =91» Xy =0,
2z 2 2

Xz = Y3 =03, X¥p, =0,

]

Xlx = ylyz = 01029 ’

Xo¥1 = =X1¥p = 009A - (28)

The reason for breaking out this narrowband cross—-correlator as a
separate problem is now apparent from (28, Namely, at each time instant, a
group of four random variables are statistically dependent on each other.

This case does not fall into the framework of (8) above, since only two random
variables were dependent there.

Using the narrowband character of all the waveforms in (24) and (26), the
lowpass filter output in figure 1 may be expressed as

2(t) = 30x,(t) + ag()I0xy(t) * ay(t)] + 3Ly (£) * by ()Iy,(t) * by(t)]. (29)
15
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The final system output in figure 1 is the weighted sum of K terms,

K

v D k) 2(t,) (30)
k=1

where it is assumed that the time separations between samples at instants
ftg} lead to statistically independent random variables {i(tk)}. The
weights and statistics can change with sample time tk, in an arbitrary
fashion,

Based upon the method in [7], we find the characteristic function of z(t)
in (29) to be given by

1 Ny + 18Ny

. 5 exp i€ - 5 (31)

fz(f,t) =

where the constants (in their most compact form) are given by

= 01020 ’

famry
§

= %— o%ag(l-—pz-lz) .

N
[

1
No = z(aja, * byby,)

Ny = %Eg(af + b2) + oZ(al + b3) - 20j0,0(aja, *+ bb,) - 201050 (aghy - albz)J.

(32)
(The characteristic function and constants in (31) and (32) are not to be
interchanged or confused with any earlier results in previous sections. In
fact, observe there is no square root involved in (31).) A1l of the
parameters in (32) can vary with time t.

In terms of the signal polar definitions in (24) and the complex noise
correlation coefficient y in (27), alternative expressions to (32) (where we
have emphasized the t-dependence) are
16
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Dy = 0)(t) op(t) Refy(t]} = oy(t) ap(t) Jy(t)| cos 8(t),

0, = § 5(t) o3(t) (1-lv(e)] ),

N, = 3 Re{s*(t) s (t)} =L A () AL(t) cos[P4(t)=P.(t)]

0~ 2 21N 22 Z7 2 1 2 >

Ny = %Eg(t)fél(t)lz . af(t)[zz(t)tZ - 2 () a,(t) Re{é;(t) 5,(t) y(t)}]=

- %Eg(t) Ai(t) + ai(t) Ag(t) - 2 0y(t) o,(t) Aj(t) An(t) ly(t)’ cos[Pl(t)-Pz(t)—o(tH].

(33)
The mean and variance of z(t) in (29) follow from (31) as
u =Dy * Ny s
ol = D? + 2D, + 20N, + 2N (38)
z 1 2 170 1°

Finally, the characteristic function of the narrowband cross-correlator
output v in (30) follows from (31) as

K
W =T[ £, w0t ) -
k=1

-1 e 2
K ] K wik) Na(k) + i$we(k) N, (k)
. 2 2 . 0 1
= ” 1- k) D,(k) + k) D,(k E ’

k=1 =1

(35)
where we have allowed all the parameters in (32) and (33) to vary with time

t . The mean and variance of output v follow from (35) as

vy = > wlk) [Dy(k) * Ny(k)],

K
k=1

2 _ & 20 [o2ar + . .
op = kzl w (k) [Dl(k) 20,(k) + 203 (K)Ny(K) + 2N, (K){. (36)
= 17
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A program for the evaluation of the cumulative and exceedance distribution
functions via (35) is given in appendix C.
Eﬂ and
In comparison with earlier results iny[7], we have obtained the following
extensions here:

1. The input signals are arbitrary narrowband waveforms; they are not
limited to two sine waves at the same frequency;

2. The Gaussian input noises can be nonstationary;

3. The number of terms summed to yield the narrowband cross—correlator
output can be greater than 1;

4. The characteristic function is in its most compact form, and the
constants are expressed directly in terms of given quantities,
having eliminated all auxiliary variables.

Qutput Signal-to-Noise Ratio

It is sometimes desirable to have simple expressions for the output
signal-to-noise ratio of the narrowband cross-correlator in figure 1. In
terms of the lowpass filter output z(t), we observe first from (32)-(34) that

uy(s) = u,(s*n) = u(n) = Ny =5 Ay A, cos(P-P,) . (37)

We then have two alternative definitions of the signal-to-noise ratio at the
lowpass filter output:

2
Ui(S) - Al Ag COSZ(PI“Pz)

R(n)= = ’
z og(n) 2 oi o%(l*oz—xz)
2 2 .2 2
R_(s+n) = uZ(S) ) A] A5 cos (PI"PZ) (38)
2 Z(stn)  4(D° + 20, + 2D,N, + 2Ny)
%2 1 2 10 1

18
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These closed form expressions allow for arbitrary noise correlations and are
considerably simpler than [7, eqs. 41-43]. The signal-to-noise ratios of

system output v in figure 1 are K times greater than either form in (38).

Specialization to Narrowband Energy Detector

If the signal and noise parameters in (24) and (27) are chosen as

a,(t) = a,(t) = a(t) ,
bl(t) = bz(t) = b(t) ’
ol(t) = Uz(t) = O(t) )
p(t) =1, X(t) =0 s (39)

then figure 1 reduces to identical input channels, that is, a narrowband
energy detector. There follows from (32),

2
Dl =g (t)9 DZ =0,

N = %(az(t) + b2(t)> - % AZ(t), Ny =0, (40)

and (31) becomes

2
1 . AS(t) /2
f ,t) = —_— . 41
0 = T exp’1§ 1 - i§o2(t) .

Corresponding results for the system output v are easily obtained from this.

R68= [-o(4 &) uw.

19
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REDUCTION OF HERMITIAN AND LINEAR FORM

The most general case of interest in this section is as follows:
random complex matrix

X = [x1 Xy oo xM]T (42)
is Mxl; constant complex matrix
A=l a, ... aM]T (43)
is Mx1l; and constant complex matrix
b11 vee b1M

b b

M1 °°° "MM

is MxM and Hermitian. The Hermitian and linear form we consider is

q = xBx + 3(x"asax) -
M M
= 2 xmbmnxn * Z xmam amxm (45)
m,n=1 m=1

which is real. Random variable q is a weighted sum of all possible products

of {X;} and {x&}, plus linear combinations.* A and B are called the
weighting matrices.

* For M=2 or 4, and real variables and weights, (45) reduces to the earlier
forms given in (1) and (29).
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We will concentrate in this section on reducing form (45) to a weighted
sum of squares of uncorrelated random variables. This stepping stone does not
require any Gaussian assumptions on X and is therefore useful as a separate
item.

The relevant statistics pertaining to random vector X are

><|
"

£ (mean matrix),

X=X-F%=xX-E,

Cov{X} = iiH = K (covariance matrix), (46)

where statistics matrices £ and K are given. MxM matrix K is always Hermitian
and non-negative definite. We assume K is positive definite; otherwise
eliminate the linearly dependent components of X. We allow Xy and xp to

be correlated with each other for any m and n; this situation is much more
general than the investigations above.

Let C be a constant MxM matrix and form the linearly transformed variables
H T
W=2C'X= [Wl W2 e WM] . (47)

Thein the statistics of W are given by

W= cE,
W=W-W=ch,
Coviw) = W' - eI - cHee. (88)
Also, from (47), since
X = cHy, (49)




e
-
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then we can express (45) as
g = wlclse ™ + S + o), (50)
where we define constant Mxl matrix
D=cla-rd d, ... 40" (51)
We want to have, from (48) and (50),
ctke = 1 (52) %
and t
o - A= diaghay a, enoay)s dee OfB7lo o Th, (53) {
for then, in addition to the relation between the means,
W= ce, (58) 3
we have the desirable properties
CoviW) =1, (55) 1
and :
H 1, A, H t 2 4o«
"= W AW+ S(WD + D) = :E% Anl¥a]* * Re 55% dWo - (56)

That is, the random vector W given by (47) is composed of uncorrelated unit-
variance components, and g is a weighted sum of magnitude-squares of these
components, in addition to a linear sum.

We now have to address the problem of determining the MxM matrices C and
Ain (52) and (53). From [8, p. 106, Theorem 2], we identify
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M=K, K-=>8~l A-=>A-l (57)

then according to [8, p. 107, eq. 29], we must solve for C and A in the
equation

B-1c = kCA™l, i.e. BKC = CA. (58)

So the only matrix that need be considered is the MxM product BK. C is the
modal matrix, and A the eigenvalue matrix, of BK. Also, from (51),

D = cMA, since ¢! = M. (59)

Letting C = [C(l) vee C(M)], where eigenvector C(m) is a Mxl
matrix, (58) can be expressed as

Bre™ = a ¢l™ for 1 emem (60)

Several important properties hold for A and C:

The {} T are all real, but can be positive, zero, or negative.

If K and B are real, then C is real. (61)
If B is positive definite, then Ay >0 for 1 <mcM,

If A=0 and E = 0, there is no need to solve (58) for C,

because D = 0 and W = 0.
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QUADRATIC AND LINEAR FORM

If random vector X is real Gaussian, if A is real, and if B is real
symmetric, then mean E and covariance K are real, and it follows that modal
matrix C is also real. Also from (47) and (59), W and D are real. Equation
(45) reduces to

M M
T T
q=XBX+XA-= §xmbmnxn+§amxm, (62)
m,n=1 m=1

which is a quadratic form and linear form.

Letting mean W in (54) be expressed as

W= [vl Vo e VM]T, (63)

the Gaussian character of X and the linear transformation (47) allow us to
write the probability density function of W as a product:

M

o) = [[ {(2“)'“2 exp(—% (w, - vm)z}- (64)
m=1

Here we used property (55). Since we now have, from (56),

M
2
q = m% (AW, * d¥n) s (65)

the characteristic function of q is

M
o0 - ()

m=1

-1/2

- "Fr {1-121"5}

L -9 %
m=1

M 2 P
A ve tdoy +ifdo/2
expfi§ E mm mn M}, (66)
m=1
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where the square root must be a continuous function of §, not a principal
value square root.* Notice that only one square root and one exponential is
required per ¥ value. Observe that the characteristic function depends on the

separate values {QH}? and id&}?, not merely on their sums. If A =E = 0, the

exponential is unity, by virtue of (54) and (59). And if M=2, (66) reduces to
(5), while M=4 leads to form (31).

To summarize, the characteristic function f_(§) in (66) for random

variable q in (62) requires the constants fa %, §d 1, and fv }§ for 1 < m < M.
The initially given quantities are weighting matrices A, B and statistics
matrices £, K. We first solve the equation (58),

BKC = CA, (67)
for eigenvalue matrix A and modal matrix C corresponding to BK. Then
A= diag(x1 Ao wes M)

D=cClA

.
[d) dy ... dy]'

"
#

T
W=clr [vg vy -+e oyl - (68)
If the mean of input X is zero, £ = 0, and if the Tinear weighting form is

zero, A = 0, then there is no need to solve for modal matrix C of BK in

(67). Then D = W = 0 and the exponential term in (66) is unity. One only
need compute eigenvalue matrix A of BK in this case.

A program for the evaluation of the cumulative and exceedance
distribution functions corresponding to characteristic function (66) is Tisted
in appendix D. The inputs to the program are considered to be M, fxﬁ},

* That is, the square root is the analytic continuation of the function
defined as 1 at ¥ =0.
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{dm}, iuﬁ}; that is, it is presumed that (67) and (68) have already been

solved prior to use of the program.

The cumulants of q are obtained from (66) as

(M
%Ea O, * Amv; *dov) = vg forn =1
Xqln) =i .
Ej—l(n_l)ljgi A;’z[gi + n(}m“m +~% dé)%] for n > 2
m=1

In particular, the variance of q is

M
2
Xl®) =23 [ 2 G 34 |- 2 -

(70)

If another random variable is formed by the sum of several independent

random variables qj with the form (62), but with different sizes Mj, the

new characteristic function is the product of terms like (66).

Breakdown of X into Two Components

It is useful to investigate a particular version of the general results
above, because the resultant forms correspond to some often-realized practical

energy detectors and correlators. We Tet M = 2N, and

U gll 12 AlD)
X = ’ B = [ A = »
v gll p22 al2)
where U, V, A(l), al2) are Nxl real matrices, and {Bij} are NxN real

T
matrices. Also 311 and 822 are symmetric, while 821 = 812 . Then
(62) can be expressed as

26
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£
]

oo [ 8] L [4]

uTelly + uTB12y + yT2ly + yT822y + yTal1) & Ta(2) |

= uTe ly + 2078 2y + yTe22y « yTall) 4+ yTal2) |
N
_ 11 12 (1) (2)
= 2 (Jm bmn un * zum bmn vn * vm bmn n) 26‘ a * vnan =
m,n=1

a1l possible auto and cross combinations of random

variables {uﬁ}" and {V&E s Pplus linear combinations. (72)
1

We also have, from (47) and (68),

i [ (1)
W=ClX= CTM, W= CT[;]= ¢ LE:] , D= CT[:(Z)] .

[¢ K
K = Cov]} = XX []EJ vf_] uu “"} . (73)
K K
vu vV
b
Then the fundamental matrix required in (67) is expressable as
B11 B12 Kuu Kuv
BK = (74)
21 22 ’
B B Kvu va

which is a 2Nx2N matrix. Also random variable (65) is now

q = & AW+ d (75)
:Ei, m'm mm ’
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which has 2N terms. The characteristic function of g, in general, follows
from (66) and (68) as

2N -1/2 2N ) )
A v +dv +ifd /2
() = Tf fl-mmg} exp 1‘?2 = 1-"'2‘;,,,"? |, (76)
=1 m-—-l
where
E (1)
- T Ti u T TIA
W= [vl \’ZN] =C [Ev]’ D = [dl d2 d2N] =C [t\(z)} (77)

(af all) a2 _ g o £, =0, then D = 0 and W = 0, and there is no

u
need to solve for modal matrix C; the exponential in fq(g) in (76) is then
unity.)

As a special case, if A =0, gll . 0, 822 = 0, then (71) and (73)
yield

and (72) gives

To12 12
q=208"V=2 é:%él Up bmn Vo =

. . . N N
= all possible cross combinations of {hﬁ}l and fv#}l. (79)

Then (74) specializes to

12 12 12
0 B K K BK B™K

21 21 21
B 0 Keu Koy B Ky B Kyy
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and (75) reduces to

Q=> A (81)
m=1
with characteristic function
N _ B T
fq(g) = 'ﬂ; {1 - 12’\m‘$:£ exp 1§§1 T s (82)
M= M=

following directly from (76) and (78).
For the particular example of

12

B =%d1’ag(ﬁl 22 ""QN) +% [91 9y oo gN]T [hl h2 cen hN]’ (83)

then

N N N
q = 21 'Qnunvn + (2 gn“n) (21 hnv’) . (84)
N= n=

n=1

with the same characteristic function (82).

As a still more-special case, let 812 =

)

I; then (79) and (81) give the

simple cross-correlator (but with correlated inputs for all time separations)

N ZN 2
9= E YV =2 A¥m 0 (85)
n=1 m=1

and (80) and (77) become
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The important equations that must be solved are always
BKC = CA (87)
or
Bre™ = a ¢ for 1ememaan, (88)

where all matrices B, K, C, A are 2Nx2N. The characteristic function of
(85) is again (82).

Special Case of Correlator (85)

Here we let components U and V have the same covariance and a scaled
cross-correlation; that is, let

ba
[}
~
-
L
=
L J
I
©
Fa
v

(89)

where o is a scale factor. This case corresponds, for example, to a common
signal in two independent components:

u{t)

s(t) + my(t),
(90)
v(t)

S(t) + ny(t),
where s(t), ni(t), ny(t) are all independent and have a common covariance.

Then (8u) becomes

BK . (91)

n
N}

Now suppose that we can determine the NxN eigenvalue matrix [T and modal
matrix Q of Kgs that is

30




KoQ@ = QI T'= diag(yys vp «ov vy)-

Then we have the standard relations [8]
K, =QrQ  where qQ = 1.

We can now express the 2Nx2N matrix in (91) as

Qo arg’
1
BK = '2_ T T =
are 0ol
Q O ol

There follows

o offger-ar 3P

Q

0 Q %P %or-kl 0 Q

TR 7035

(92)

(93)

(94)

(95)

(96)

But the middle matrix in (96) can be developed in detail in the partitioned

form
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r -
N bl
7" { 271
) i
1 \ 1
7PYN ~ A 7N
1T FAR i
21 [ 2°71 — 2 . (97)
l »
1 i
2N ' LA
- I 1

This matrix is singular when the kth row is equal to, or the negative of, the

k+N th row. This leads to the eigenvalues {in 2? of matrix BK:

1 1
)\1 '2'(D+1)Y1: sesy )‘N '2’(0+1)YN )

n
[

AN-q-l %(Q—I)Yls saey A2N %(D"‘l)YN . (98)

Thus we need only solve for the N eigenvalues Iy&‘? of matrik K., and
then use them as above to determine all 2N eigenvalues of BK; this is a
significant shortcut.

If also E, = E =0, then W =0 from (86), and the characteristic

function of q in (85) follows from (82) and (98) as

N -1/2
fq(F) -IT {(1-1' (o+1)vy, ) (1~ (o-l)Ym?)}] =

m=1

N -1/2
{izon, + (1-6%)1 52} : (99)

m=1

This is a generalization of [1, eq. 54], which held for a single pair of
Gaussian random variables.
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EXAMPLES

The program listed in appendix A for the second-order processor (8) and
attendant characteristic function (9) has been employed to yield the result in
figure 2. The particular values for the number of terms K, the weights, and
the input statistics are listed in lines 20-120. There is no physical
significance attached to this particular example; rather it has been run
simply to illustrate the extreme generality that the technique is capable of.
Some negative values for the weights, means, and correlation coefficients have
been employed t¢ emphasize this generality. This simple example (and others
to follow) can be used as a check case on any user-written program to evaluate
cumulative and exceedance distribution functions.

The selection of parameters L, A, b in lines 130-150 is discussed in
detail in [1]; the reader is ruferred there for the deleterious effects that
can occur for improper choices of L, A, b. The selection of Mf, the FFT
size in line 160, is rather arbitrary; it controls the spacing at which the
probability distributions are computed, but has no effect upon the accuracy of
the results (except for round-off noise). Additional computational details on
the particular program for characteristic function (9) are given in appendix A.

The ordinate scale for figure 2 is a logarithmic one. The lower right
end of the exceedance distribution function curve decreases smoothly to the
region 1lE-11, where roundoff noise is encountered. The exceedance
distribution function values continue to decrease with x until, finally,
negative values (due to roundoff noise) are generated. For negative
probability values, the logarithm of the absolute value is plotted, but
mirrored below the 1E-12 Tevel. These values have no physical significance,
of course; they are plotted to illustrate the level of accuracy attainable by
this procedure with appropriate choices of L and a.

The rates of decay of the cumulative and exceedance distribution
functions in figure 2 are markedly different for this particular example.
Additionally, since the decays are both linear on this logarithmic ordinate,
it means that both tail distributions are exponential, not Gaussian. These

attributes of the cumulative and exceedance distribution functions are easily
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and quickly discernible by use of the numerical technique in [1], for a
limitless variety of weights and input statistics, with a minimum of effort on
the part of the user.

As a check on the program in appendix A, the second-order processor in
(8) was simulated, and 10,000 independent trials were used to determine its
performance for the exact same parameters as used for figure 2 above. The
program is listed in appendix E and the results are given in figure 3. The
corroboration is excellent, even near the 1E-4 probability level.

As the number of terms, K, in the second-order processor (8) is
increased, and if the statistics are identical, the random variable x should
approach Gaussian, at least near its mean. The example in figure 4 was run
for K = 10, and all weights and statistics independent of k; the particular
choices were

a=.6,b=-—.6,c=.3,d=-.2,e=.2,
mS = .5, mt = -9, oy = i, Op = 1, p = .4, (100)
L=4, a=.05 b= 20n, Mf = 256.

The cumulative and exceedance distribution functions in figure 4 both display
a parabolic shape near the mean of x, which signifies Gaussian behavior of the
random variable, as expected. However, on the tails, the distributions are
tending to linear, which means an exponential decay there. This observation
for this example confirms the comments of [7, p. 673].

The cumulative and exceedance distribution functions for an example of
the second-order processor with fading are displayed in figure 5, as
determined from characteristic function (21) and the corresponding program in
appendix B. The power law, v, for the fading probability density function
(19) is 2.7 for this example, but can be easily changed. The particular
constants employed are listed in lines 20-110 in appendix B.

An example of the distributions for the narrowband cross-correlator of
figure 1 is presented in figure 6, as evaluated from characteristic function
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(3¥) and the program in appendix C. The weightings, signal components, and
noise statistics have no special values or interrelationships; the particular
values used here are listed in lines 20-110.

The distributions for the reduced quadratic and linear form (65) and
accompanying characteristic function (66) are presented in figure 7 for the
numerical example employed in the program listing in appendix D. If the given
form is instead that of (62), then (67)-(68) must first be solved before the
program in appendix D can be employed; that is, one must augment these results
with the capability for extracting the eigenvalues (and eigenvectors in some
cases) of the MxM matrix BK. The size of the FFT, Mc  has been increased to
1024 in figure 7; this results in finer spacing of the distribution values and
additional spikes in the round-off noise region centered about 1E-12.
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SUMMARY AND DISCUSSION

Closed form expressions for the characteristic functions of the decision
variables of three classes of second-order processors have been derived. The
input noise to the processors must be Gaussian, but it can be nonstationary
with arbitrary statistics. Programs for the direct evaluation of the exact
cumulative and exceedance distribution functions have been generated and then
exercised for completely general values of the weights, signal parameters, and
noise statistics. There is no assumption needed about a large number of
statistically independent contributors, nor need any signal-to-noise ratio be
either small or large. The first two classes of processors are restricted in
form, but include many of the practical devices often encountered in detection
and estimation problems. The third class covers the most general second-order
processor; it requires the solution for the eigenvalue and modal matrices of
an MxM matrix (where M is the size of the general guadratic form; in addition
to the program furnished here. The approach utilized here allows a user to
quickly and easily obtain accurate quantitative information about the
performance of a particular processor, and to investigate the effects of
making changes in any of the input constants or parameters.

Approximations to the performance of continuous quadratic processors are
possible by use of the above procedures. For example,

ffatl dt, x(t,) 8(t), t,) x(t,) = &) 8, > x(ma;) s(ma, nay) x(na,), (10
m,n
which is of the form XTBX encountered in (62). Also

J]th dt, u(tl) s(tl, t2) v(tz) =4 8, :E:“(mAl) 8(mA1, nAZ) v(naz), (101)

m,n

which is of the form UTBlzv encountered in (79).

42




TR 7035

Receiver operating characteristics, that is, detection probability vs
false alarm probability, can be easily determined from the above results.
First store the exceedance distribution for zero signal strength in an array.
Then plot the exceedance distributions for nonzero signal strengths vs this
stored array of numbers, each point for a common threshoid. The common
thresholds are most easily realized by keeping sampling increment a and FFT
size Mc the same throughout all the computations.

43/44
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APPENDIX A. SECOND-ORDER PROCESSOR

This program computes the cumulative and exceedance distribution
functions of random variable (8) via characteristic function (9). The
required inputs are listed in lines 20-120 and are annotated consistently

with (8). The parameters Dy, D2, Ng» Ny, N, required in characteristic
function (9) are pre-computed once in loop 290-510 for the sake of execution
time. The mean of x is entered in line 520. When we enter loop 590-830 for
the actual calculation of the characteristic function (9), the number of
computations are minimized. For example, only one complex exponential and
square root are required per § value, in lines 740-750. The square root in
(9) is not a principal value square root, but in fact must yield a continuous
function in¥. In order to achieve this, the argument of the square root is
traced continuously from §= 0 (line 530). If an abrupt change in phase is
detected, a polarity indicator takes note of this fact (line 780) and corrects
the final values of characteristic function fy(f) (1ine 790). More detail
on the selection of L, a, b in lines 130-150 is available in [1].

18 ! SECOND-ORDER PROCESSODR

208 K=5

39 DATA .6,-.5,.4,-.3,.2

40 DATA .9,.8,.7,-.6,~.5

50 DATA -.6,-.8,1,1.2,1.4
60 DATA .1,-.2,-.3,.4,.5

7e DATA ~-.7,.6,.5,.4,~-.3 e{k> weightings

86 DATA .2,.3;,.4,-.5,-.6 Means of random variables s(k)

I Number of terms summed

!
!
{
'
!
!

96 DATA .8,~.7,~-.65.5,.4 ! Means of random variables t<(k>

!
!
!
{
1
1
'

ack) weightings
blk?> weightings
c(k) weightings
d{k> weightings

189 DATA «1,.3,.95,.7,.9 Standard deviations of sd(k»

110 DATE ,2,.4..6,.8,1 Standard deviations af t<k>

120 DATA .4,-.5,.6,.7,~-.8 Correlation coeffs. of sCk> and t (k>
130 L=25 Limit on integral of char. function
140 Delta=,85 Sampling increment on char. function
150 Bs=.75%#(2#P1l-Delta’ Shift b, as fraction of alias interwval
1686 Mf=2~8 Size of FFT

170 PRINTER IS ©

1806 PRINT "L =";L,"Delta =";Delta,”"b =";Bs,"Mf =" Mf

1908 REDIM AC1:K>,BC1:K),CCL iKY, DCLIKO),ECLLIKD

200 REDIM MsC13K), Mt (1K) ,S8C1:K),St(1:K),Rho(1:K)

219 REDIM D1<¢1:K>,D2C1:K),NBCL1 1K), NICL1IK) N2CLIKD

228 REDIM X<(@:Mf-1>,Y(BIMFf-1D

230 DIM AC1:10),BC1:1@)>,C¢1:10>,D(1:18),E(1:10)

248 DIM MsC(i:10>,Mt(1:10>,53¢1:18),8t(1:10>,Rho(i:1@>

258 DIM D1¢1:18>,02¢1:10>,N8(1210),N1C(1:108),N2¢(1:18)

260 DIM X(8:1023>,Y(0:1623)

279 READ A(*)>,B(*),CCs ,DCx)>,E(*) { Enter

280 READ Ms(*)>,ML(%),8s(*),St(¥),Rho(*> | constants
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298 FOR J=1 7O K t Calculation
300 Ti=Mg<JI3~2 I of
310 T2=Mt (J)~2 | parameters

320 T3=88(J)>~2

330 T4=S1 (J)~2

340 TS=Ms (JI*ML (J)

358 Té=Rho(J)>*#Ss(J)>*St(J)

360 T?7=4%ACJ)#BC(I>~C(J)~2

370 T8={1-Rho(J)>~2)#T3%T4

380 T9=ML (J>#Ss(JD

390 TiOo=Mg(JI#St(J>

400 Ti1=DC(J>~2

410 Ti2=EC(J)~2

420 T13=D(JH>#ECT)

430 DICT>=2%CR(II*TI+B(J>*T4+C(J>%T6)

440 D2(JI)=T7#T8

450 NBCI)=A(I)*TI+BC(Id#T2+CCIX*TS+DCII*Ms (JHI+ECTI#ML (T
4690 TaT7#( . 5#(Ti*T4+T2%T3>-T5*T6)

470 T=T+(2#ACIORECII>-CCIH>*#D(T>)>%Ss(J>%(T9-Rho(J>*T18>
4880 TaT+(2%B(I)#DCI)-C(I>#ECTI %St (JD#(T18~Rho(J)O>*T9)
490 NICI)=sT~-.S#(T11%T3+T12%T4)>-T13*T6

Se0 N2CIdm-CRCII*TI2+B(IX*T11~-C(JO*T13)*T8

513 NEXT J

520 Mux=SUM(NG>+.5*SUMCD1> ! Mean of random variable x
530 R=9 !  Argument of square root
540 Pay ! Polarity indicator

350 MuysMux+Bs

560 X(@>=0

$70 Y(@)=,5%Delta*Muy
-1:1" ] N=INTC(L/Delta>
598 FOR Ns=1 TO N

600 Xi=DeltaxNs

610 X2=Xi#Xi

Argument xi of char. fn.
Calculation

I
|

620 Pr=l | of

€30 PiaSr=5i=Q I characteristic

640 FOR J=1 T0 K I function

650 Drat-X2%#D2<¢J)> I fyudlxio

669 Dim=Xi®DicCI)

67e CALL Mul<Pr,Pi,Dr,Di,RA,B)

680 Pr=A

690 Pi=B

700 CALL Div(NBC(JI)>~X2#N2(J)>,~Xi#N1(J)>,Dr,Di,A,B>
710 Sr=Sr+A

720 Si=Si+B

730 NEXT J

740 CALL Exp(-Xi*Si ,Xi*(Sr+Bs),A, B>

(41"} CALL Sqr(Pr,Pi{,C,D

768 Ro=R

?7e R=ATNCD/C>

780 IF ABS(R-Ro)>1.€ THEN P=-pP

790 CALL Div(A,B,C*P,D*P ,Fyr,Fyi)

121 Ms=Ns MOD Mf ! Collapsing
810 X{Ms)aX(Ms)>+Fyr/Ns

gze Y(Ms)=Y(Ms)+Fyi/Ns

a3e NEXT Ns

840 CRLL FfL1oz(MF , X(*), Y (%)) I @ subscript FFT
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850 PLOTTER IS "GRAPHICS®
868 GRAPHICS

870  SCALE 0,Mf,-14,0

880 LINE TYPE 3

890 GRID Mf/8,1

9080 PENUP
910 LINE TYPE 1
9208 B=Bs*#Mf*Deltas(2*PI> ! Origin for random variable x

938 MOVE B,0

940 DRAW B,-14

958 PENUP

960 FOR Ks=9 TO Mf~1

978 T=Y(Ks)/PI-Ks/Nf

9806 X(Ks)>=,5-T i Cumulative probability in X(¥)
998 Y{(Ks)=Pr=.5+7 { Exceedance probability in Y(#)
18886 IF Pr>=1E-12 THEN Y=LGT(Pr>

1819 IF Pr{=-1E-12 THEN Y=-24-LGT(~-Pr>

1820 IF ABS(Pr><1E-12 THEN Y=-12

1838 PLOT Ks,Y

1848 HNEXT Ks

1858 PENUP

1868 PRINT Y@ ;Y10 Y(MP-235YC(Mf-1)

18780 FOR Ks=8 T0O Mf-1

1088 Pr=X(Ks)

199@ IF Pr>=1E~-12 THEN Y=LGT(Pr>

1188 IF Pr<{=-1E-12 THEN Y=-24-LGT{(-Pr>

1110 IF ABS(Pr)<1E-12 THEN Y=-12

‘4128 PLOT Ks,Y

11380 NEXT Ks

11490 PENUP

1156 PRUSE

1166 DUMP GRAPHICS

1170 PRINT LINCS)

1188 PRINTER IS 16

1198 END

1260 |

1218 SUB Muld(Xi,¥1,X2,Y2,A,B) 1 21#22
1220 R=X1#X2-Y1*Y2

1238 BsX1#Y2+X2#Y1

12486 SUBEND

12%@ !

1268 SUB DiviX1l,¥Y1,X2,Y2,A,B> 1 21,22
1270 T=X2%X2+Y2#Y2

1280 RA=(X1#X%2+Y1*¥2)/T

1290 B=(Y1¥X2-X1#¥2)/7

1360 SUBEND

1316 !

1320 SUB Exp(X,Y,A,B> ! EXPC(2ZD
13380 T=EXP{(X>

1340 A=T*COSCYD

1350 B=T*SINCY)

1368 SUBEND

1378 !
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1382 SUB Sqri(X,Y,A,B> I PRINCIPAL SGR(2)
1390 IF X<>0 THEN 1430

1400 A=B=SQR{(.S5*ABS(Y))

1418 IF ¥<® THEN B=-B

14228 GOTO 1540

1430 F=SQR(SQR(F#X+Y#Y))

1440 Ts=,S#ATNC(Y X))

1450 A=F*#C0SC(T>

1460 B=F#SINCT)

1470 IF X>0 THEN 1540

1488 T=A

1490 A=-B

1508 B=T

1510 IF Y>=@ THEN 1540

1520 HA=-RA

153@ B=-B

1548 SUBEND

185 !

1560 SUB Ffe 1Bz (N, X(%),¥(%)) PN <= 2~10 = 1024, N=2Z~INTEGER 9 subscript
1570 DIM C(@:2%56>

15828 INTEGER I1,12,13,14,15,16,17,18,19,116,J,K

1590 DATA 1,.999981175283,.999924701839,.999830581796,.999698818696,.9995294175
91,.999322324588, .9990877727753, .998795456205, .998475580573,.998118112900 .
1608 DATA , 397723066644, ,3972908456679, ,99682082992%1,.996312612183,.995767414468
»+ 995184726672, .994564570734,.993906970002, . 993211949235, .992479534599

1618 DATA ,991709753669, .998902635428, .9900582108262,.989176%50996%5,,.9882573567731
s:987301418158, .986308097245,.985277642389,.984210092387, .983105487431

16280 DATA .981963869110,.980785280403,.97956976%5685,.9783173707208,.977028142658
s« 375702130039, .9743.,9382786,.972939952206,.9715083890986,.570031253195

1638 DATAR .968522094274,.96697647104%5,.965394441698,.963776065795,.962121404269
s+ 9604308519416,.958703474896, .956940335732,.955141168306,.9533068408354

16486 DATA ,951435020969, .9495281808593,.947585591818,.945607325381,.943593458162
s+ 941544065183, ,9394592236082,,937339911915,.935183589939, .932992798835

1659 DATA .93B766961879,.9285086080473,.9262108242138,.923879532311,.921514039342
+:919113851690,.916679059921,.914209755704,.91.706832005,.9891679830891

16628 DATRA .906595704515,.903989293123,.901348847046, .898674465694,,.8959662497%56
y+ 893224301196, .890448723245, ,887639620403,.884797098431,.881921264348
1670 DATA .879012226429,.876070094195, .873094978418, .870086991109, .867046245516
» « BE3972856122, .860866938638, .857728610000, .854557988365, .851355193185
1680 DRTA .848120344803, .844853565250, .841554977437,,838224705555,.834862874986
» 831469612303, .8280450452%58, .824589302785,.8211082514991,.8173584813152

1698 DATA .£14036329706,.810457198253, .806847553544,,8032087531481,.799537269108
s« 95836904609, .79210865773008, , 788346427627, . 784556597156, .780737228572

1799 DATA .776888465673,.773010453363,.769103337646. .765167265622,.761202385484
s+ 757208846506, .753186799044,.749136394523,.745057785441,.740951125355

17180 DRATAR .736816568877,.732654271672,.7284643908448,,724247082951,.,7200825879%61
s« 715730825284, .71143219574%5,.707106781187,.702754744457,,6983762495409

1720 DATA .693971460890,.689540544737,.685083€667773,.680600997795,.6760892708357%
s 671558954647, .666999922304,.662415777590, .657806693297,.633172842954

1732 DATA .648514401022,.643831542890,.639124444864,,634393284164,,629638238913
624859488142, .620057211763,.615231598581,.61038280G276,.605511041404

1740 DATA .600616479384,.595699304492,.590759701859,.585797857456, .56808133580896
2573808191418, .5790780745887, .565731818784, .360661576197,.555570233020

1758 DATA .550457972937,.545324988422,.540171472730, .534997619887,.529803624686
s« 524589682678, .519355990166,.514102744193,,508830142543,.503538383726
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1760 DATA .498227666973,.492898192230,.487550160148,.,482183772079,.4767992380€73
471396736826, .465976495768, .460538710958,,455083587126,.449611329655

1779 DATAR .444122144570,.438616238539,.433093818853,.4275558924308, .42200082706808
s+ 416429560098, .410843171058, .405241314005,.399624199846,,393992840061

1788 DATA .388345B846699,,382683432365,.37700874190216,.371317193952,.3656129978895
s+ 359895036535, .354163525420, .348418680249,.342660717312,,336889853392

1798 DATA .331106305760,.325318292162,.319502030816,.313681748399,.307849640842
y + 302005949319, .296150888244,.290284677254,.284407537211,.278519689385

1800 DATA .272621355450,.266712757475,.2608794117915,.254865659605,.248%27685746
y 242980179903, ,237023605994,,231058108281,,.225083911360,.219181240157

1819 DATA .213110319916,.287111376192,.201104634842,.195090322016,.1890686€4158
»« 183039887955, ,1770042208412,.170961888760,.164913120490,,158858143334

1828 DATA ,152797185258,.1467308474455,.140658239333,.1345807€8507,.,128498118794
s+ 122418675199,.116318630912,.110222207294,.104121633872,.9801714083296E-1

1830 DATA .9190889564971E-1,.857973123444E-1,.796824379714E~-1,.735645635997E~1,.
674439195637E-1,.613207363022E-1,.551952443497E-1,.49B676743274E~1

1848 DRTA .429382569349E-1,.368072229414E-1,.306748031766E-1,.245412285229€&-1,.
184B67299058E-1,.122715382857E-1,.613588464915E-2,0

1850 RERD C(%>

18960 K=1024/N

1870 FOR J=0 TO N-4

1880 C<IX=C(K*I>

1890 NEXT J

1900 Ni1=N-4

1918 N2=N1+1i

19280 N3=N2+1

1938 N4=N1+N3

1949 Log2n=INT(1.4427%L0OGC(NI+,.5)

1958 FOR Ii=1 70 Log2zn

1960 12=2~C(Log2n-11>

1970 13=2x12

1980 I4=N-I3

1998 FOR IS5=1 TO 12

2000 I6=CIS5-1>%14+1

2610 IF I6<=N2 THEN 2658

202@ N6=~C(N4-1€-1>

203@ N7=~-C(I6-N1-1>

2040 GOTO 2670

2050 Né=C(l16-1)

2068 N7=~C(N3-16-1>

2070 FOR 17=0 TO N-I3 STEP I3

2080 I8=17+I5

20906 19=18+12

2100 NB8=X(I8-1)-X(I3%-1>

2110 N9=YC(I8-1)-Y(19-1)

2120 X(I18-13=X(]18-1)+X(19~1)

2130 Y(I8-10=YC(I8-1)+¥(I9-1)

2140 X(19-1)=NE6#NB-N7*N9

2150 Y(I9-1)>=NE6*N9+N7*N8

2168 NEXT 17

2178 HEXT IS5

2188 HNEXT 11

2190 Ii=lLog2n+t

2298 FOR I2=1 TO 1@ I 2~10=1024

2210 C(I2-1>=1

2220 IF l12>Log2n THEN 2249

2230 C(l2-1>=2~(1t1-12)

2248 NEXT I2
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2250 K=

2268 FOR Ii=1 TO C(9>

2278 FOR I2=11 TO C(8> STEP C(9
2288 FOR 13=12 TO C<(?> STEP C(8)
2298 FOR 14=1I3 TO C¢(6> STEP C(?)
2368 FOR IS=I4 TO C(5> STEP C<(6)
2312 FOR 16=I5 TO C(4> STEP C(D
2320 FOR 17=16 TO C<(3> STEP C<(4>
2330 FOR I8=17 TO C(2> STEP C(3)
2348 FOR I9=18 TO C<1)> STEP C(2)>
2352 FOR I1@=I9 TO C(@> STEP C(1>
236 J=l18

2370 IF K>J THEN 2440

2380 A=Y(K-1)

2398 X(K-1)=X(J-1)

24088 X(J-1>=R

2418 AR=Y(K~-1)

2420 Y<(K-1)>=¥(J-1)

2438 Y<(J-1)=R

2448 K=K+l

2450 NEXT l1ie@

246@ NEXT 19

2478 NEXT 18

2480 NEXT 17

2490 NEXT I6

23588 NEXT 15

2510 NEXT 14

2520 NEXT I3

2338 NEXT I2

2548 NEXT I1

2550 SUBEND
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APPENDIX B. FADING FOR SECOND-ORDER PROCESSOR

This program computes the cumulative and exceedance distribution
functions for characteristic function (21), when the power fading factor r in

1 ¥

(18) has probability density function (19). The parameters Dl’ DZ’ NO, N1

are pre-computed once in lines 210-310. The logarithms in lines 430 and 440
have arguments that never cross the branch line along the negative real axis
for the principal value logarithm; hence the calculated characteristic
function is automatically continuous for all .

1@ | FADING FOR SECOND-ORDER PROCESSOR

20 Nu=2.7 ! Power law for fading

30 K=5 Number of terms summed

49 Rk=.,7 atk) weighting

1% Bk=-,9 b¢k) weighting

60 Ck=-.6 clk) weighting

78 DATA .2,.3,.4,-.5,-.6 Means of random variables s(k)
808 DATA .8,~.7,-.6,.5,.4 Means of random variables t<(k)>
90 Ss=.3 Standard deviation of s(k?

100 St=,2 St andard deviation of t<k>
110 Rho=-,.4 Correlation coeff. of s(k? and t(k)
128 =158 Limit on integral of char. function

130 Belra=.25

149 Bs=.625%#(2%PI/Delta)d
150 Mf=2~8

168 PRINTER 1S ©

170 PRINT "L ="3;L,"Delta =";Delta,"b =";Bs,"Mf ="{MNf
180 REDIM MsC1:K), ML (1K), XCB:MFf—~1),Y(BIMF-1)

190 DIM MsC1:18), Mt(l 19),%¢0B: 1023, Y(B. 123>

Sampling increment on char., function
Shift b, as fraction of alias interval
Size of FFT

c— e e tham tmm ewm e i cmm cmm e b e

200 READ Ms (%), Mt(*) Enter constants
218 M20=DOT(Ms.ﬂs) ! Calculation

220 MOZ2=DOT (Mt , ML) {  of

238 Mi1=DBOT(Ms, Mt > ! parameters

240 Ti=Ss#Ss

250 T2=St %St

260 T3=Rho#Ss#St

270 T4=4#Ak *Bk ~Ck *#Ck

280 N@p=Rk *M20+Bk *MB2+Ck *M1 1

2959 Nip=T4#(,S*#(T2*M20+T1*MB2>-T3*M11>
3490 D1=2%#CAk#T1+Bk*T2+Ck*#T3)

310 D2=T4%(1-Rho*Rho)>*T1%T2

320 Dip=D1i+HOp-/Nu

330 D2p=D2+N1ip/Nn

340 Mux=N@p+.S5%K*D1 { Mean of random variable x
330 Muy=Mux+Bs

360 TaNu~, S#K
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370
380
398
400
410
420
430
448
450
460
478
480
498
S5ee
Si10
528
53@
5408
550
560
570
Sg80e
598
€060
610
6209
630
640
659
660
€70
680
690
700
718
720
739
740
[4-1
760
770
788
’9e
800
gie
820
830
840
8350
860
878
880

8-2

X(0)=0

Y(Q)=,5%Delt a®Muy
N=INTC(L/Delva>

FOR Ns=1 TO N

Xi=Delta*Ns

X2=Xi#Xi

CALL Log(1-X2+#D2,-Xi*D1,R,B>
CALL Log(1-X2+D2p,-Xi*Dip,C,D>
Ti=T#R-Nu*C
T2=T#B-Nu*D+Bs*Xi

CALL Exp(Ti,T2,Fyr,Fyi>
Ms=Ng MOD Mf
X(Msr)=X(Ms>+Fyr-Ns
Y(Ms)sY(M8)+Fyi/Ns

NEXT Ns

CALL Ffe10z{Mf,XC%d,Y (%))
PLOTTER IS "GRAPHICS"
GRAPHICS

SCALE o,Nnf,~-14,0

LINE TYPE 3

GRID Mf/ 8,1

PENUP

LINE TYPE 1

B=Bs#Mf*Delta /{2%P1)

MOVE B, ©

DRAKW B,~-14

PENUP

FOR Ks=0Q T0O Mf-1
TaY(Ks)>/Pl-Ks Mf

RA(Ks)=,5-T

Y(Ks)=Pr=,5+7

IF Pro={E~-12 THEN Y=LGT<(Pr>
IF Pr{==1E~12 THEN Y=-24-LGT¢{-Pr)
IF ABS(Pr><{1E-12 THEN Y=-12
PLOT Ks,Y

NEXT Ks

PENUP

PRINT ¥C@3Y L) Y(MFP=-2)3YC(MFf-1)
FOR Ks=8 TO Mf-1

Pr=¥(Ks)

IF Pr>=1E~-12 THEN ¥Y=LGT(Pr>
IF Pr<{==1E-12 THEN Y=-24-LGT¢(-Pr)
IF ABS(Pr><1E~12 THEN Y=-{2
PLOT Ks,Y

NEXT Ks

PENUP

PAUSE

DUMP GRAPHICS

PRINT LINCS)

PRINTER IS 16

END
!

Argument xi of char.

Calculation

of
characteristic
function
fydxiy

Collapsing

8 subscript FFT

fn.

Origin for random variable x

Cumulative probability in X(#>
Exceedance probability in Y(#*)




890
900
910
920
930
940
950
960
978
980
990
1000
1e1e
102@
1839
1840

SUB Exp(X,Y,R, B>
T=EXP (X)

A=T#*COSCY)

B=T#SINCY)

SUBEND

!

SUB Log¢X,Y,A, B>

A=, S*LOG(X*X+Y*Y)

IF X<>8 THEN 1008
B=,S*PI#SGN(Y)

GOTO 1@2e

B=ATNCY/X)

IF X<® THEN B=B+PI#(1-2%(Y<B))
SUBEND

i

TR 7035
EXP(2>

PRINCIPAL LOG(2Z)

SUB FFL1BzCN,X(*¥),Y(*3) ' N <= 2~18 = 1824, N=2~INTEGER 9 subscript

B-3/B-4
Reverse Blank




APPENDIX C. NARROWBAND CROSS-CORRELATOR

This program computes the cumulative and exceedance distribution
functions of random variable (30) via characteristic function (35).
parameters D;, p,, Ng, Nj are pre-computed in lines 280-390 and
weighted according to (35)-(36) in lines 400-440. A1l the functions
are analytic.

TR 7035

The

employed

18 ! NARROWBARND CROSS-CORRELATOR

20 K=$§ I HNumber of terms summed

39 DATA .6,-.5,.4,-.3,.2 | wik) weightings

48 DATA .9,.8,.7,-.6,-.5 ! alck) signal 1 in-phase components
50 DATA ~-.6,-.8,1,1.2,1.4 | bick> signal 1 quadrature components
€0 DATA .1,-.2,~.3,.4,.5 | az2ck> signal 2 in-phase components
70 DATA -.7,.6,.9,.4,-.3 | b2k signal 2 quadrature components
80 DATA .1,.3,.5,.7,.9 ! sigmal¢k)> noise ! standard deviations
99 DATA .2,.4,.6,.8,1 ! sigma2¢k) noise 2 standard deviations
1060 DATA .4,-.5,.6,.7,-.8 | rhodk> noise 1ri-phase corr. coeffs.
11e@ DATA .9,-.7,-.5,.3,-.1 ! lambda noise quadrature corr, coeffs.
120 L=50 I Limit on integral of char. function
130 Delta=.5 | Sampling increment on char. function
140 Bs=,5%(2#PI/Delta) I Shift b, as fraction of alias interval
150 Mf=2~8 I Size of FFT

160 PRINTER IS ©

170 PRINT "L =";L,"Delta =";Delta,”"b =";Bs,"Mf =" ;Mf

180 REDIM WC1:KY,AL1CL1IK),BIC1iK),A2C1IK),B2C1KD

190 REDIM S1¢1:K>,82¢1:K>,Rho(i:K>,Lambdac1:K>

200 REDIM DI<C1:K),D2C1:K),NBC1:K),NICLIKD

210 REDIM X<Q:Mf=1),Y(B:Mf-1>,WN2¢1:K)

220 DIM W(1:108>,A1¢1:108)>,B1C¢1:218>,A2(1:18>,B2C1:1@)

230 DIM S1¢1:10),S2¢1:10>,Rho(1:19),Lambdad1:10>

248 DIM D1<¢1:10),D2¢1:10)>,NOC1:10)>,N1¢1:18)>

258 DIM X(8:1023)>,Y(8:1023>,H2C¢1:10)

260 READ W{#),A1<(#)>,B1(*),A2(%)>,B2(*> | Enter

270 READ S1(%),82(*)>,Rho(*),Lanbdal#> | constants

280 FOR J=1 TO K ! Calculation

290 Sis=51(J)~2 I of

309 S525%8S2(J>~2 ! parameters

310 Ti=81<¢J)>#82<¢J>

320 D1<¢J>=T2=aT{#Rho(J)

330 D2¢J )=, 25%S1s4S28%#(1-Rho(J>~2-Lambda{J>~2)

340 T3=R1(J>#A2¢I>+B1(J>#B2CJ>

350 NOCI>=, 52T3

360 T4=R2<¢J)#B1C(I>~A1(J>*#B2(J>

37e TS=S28# (A1 (I 2+B1(J)~2)+S1s%#(A2(J)~24B2<(J>~2)

380 N1<T)=, 125#(TS-2#T2#T3-24TixLanbdacI>%T4)

390 NEXT J

400 MAT W2=W.H

410 MAT Di=W.D!

420 MAT D2=W2.D2

430 MAT NO=U.NO

440 MAT Nis=W2.N1

4350 Mux=SUMC(NB)>+SUM(DI1> ! Mean of random variable v
460 MuysMux+Bs

C-1
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470
480
49@
See
Sie
520
530
540
55e
1%
Svo
580
590
608
1@
629
638
6409
6€5a
660
670
680
€906
780
via
728
73@
740
vSe
768
vvea
780
790
see
gio
82@
g83a
840
850
8508
870
880
899
998
910
920
930
940
958
960
g7e
980
990
1000
t1e1e
1920

X(a)=0

Y{(a)=,5#Delta®Muy

N=INT{L-Deltal

FOR Ns=1 TO N

Xi=DeltaxNs

X2=X1i*#Xi

Pr=1

Pi=Sr=8i=9

FOR J=1 TO K

Dr=1+X2%D2CJ)

Di==-Xi*D1<J)

CALL Mul<Pr,®i,Dr,Di,A,B)

Pr=f

Pi=B

CRLL Div(NB(J),Xi*N1<J>,Dr,Di,R,B>
Sr=Sr+A

Si=Si+B

NEXT J

CALL Exp(-Xi%Si,Xi*(Sr+Bs),RA,B>
CALL Div(A,B,Pr,Pi,Fyr,Fyi)

Ms=Ns MOD M¢ !
X(Ms)=X(Ms)+Fyr/Ns
Y(Ms)=Y{MsO)+Fyi-sNs

NEXT Ns

CALL FFL10z<{Mf, XC(E¥),¥C(%)) !
PLOTTER IS “GRAPHICS"

GRAPHICS

SCALE o,Mf,~-14,0

LINE TYPE 3

GRID Mfr8,1

PENUP

LINE TYPE 1

B=Bs*MfxDelta-(2«PI) !
MOVE B,0

DRAW B,-14

PENUP

FOR Ks=0 TO Mf-1i

T=Y(Ks)/Pl-Ks/Mf

K{Ks)=,5-T _ !
Y(Ks)=Pr=.35+T !
IF Pr>=®1E-12 THEN Y=LGT(Pr>

IF Pr{==1E-12 THEN Y=-24-LGT<{-Pr>
IF ABS(PrJ)<{1E-12 THEN Y=-12

PLOT Ks,Y¥

NEXT Ks

PENUP

PRINT Y(@)3Y 1) Y(ME=-2) ¥ (MFf=1>
FOR Ks=0 TO Mf-1

Pr=X(Ks)

IF Pr>=1E-12 THEN Y=LGT<(Pr>

IF Pr{=-1E~-12 THEN ¥Y=-24-LGCT(-Pr)
IF RBSC(Pr><{1E-12 THEN Y=-12

PLOT Ks,Y

NEXT Ks

PENUP

PAUSE

= e e mm s cwa

Argument xi of char. fn.
Calculation

of

characteristic

function

fyixid

Collapsing

@ subscript FFT

Origin for random wariable v

Cumulative probability in X(%>
Exceedance probability in Yd{(#)




1030
1040
1650
1060
1870
1980
1090
1100
1110
11208
1130
1149
1158
1160
1178
1180
1192
1200
1210
1220
1230
12490
1250

DUMP GRRAPHICS
PRINT LINCS)
PRINTER IS 16

END

3

SUB Mul(Xi,¥Y1,%2,Y2,R,B>
AzX1#X2-YixY2
BaX1#Y2+X2%Y1
SUBEND

]

SUB Div(X1l,Y1,X2,Y2,R,B)
TaX2#X2+Y2%Y2
AR=CX1#X2+Y1%Y2) /T
Ba(YiaX2-X1%#Y2) /T
SUBEND

{

SUB Exp(X,Y,R,B)
T=EXP(X)
A=T+COS<(Y)
B=T#SINCY)>

SUBEND

[]

SUB FRt10z(N,X(%),Y(#))

N

TR 7035

21%22

21,22

EXP(2>

2~18 = 1824, N=2~INTEGER 9 subscript

C-3/C-4
Reverse Blank
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APPENDIX D, REDUCED QUADRATIC AND LINEAR FORM

This program computes the cumulative and exceedance distribution
functions of random variable (65) via characteristic function (66). The
required inputs to the program are M and the {Am}, {dm}, {Qm& of (68).

The square root in (66) must again be continuous and is handled exactly as in
appendix A. The parameters required in the exponential of (66) are
pre-computed in lines 170-210, and the mean of g is entered in line 220.

18 ! REDUCED QUADRATIC AND LINERR FORM

20 M=S I Number of terms summed

3e DATA .2,-.3,.4,.5,~-.6 | Lambda values

49 DATA -.1,.3,.5,.7,-.9 ! d values

Se DATA .6,.5,-.4,-.3,.2 I Nu values

€0 L=809 ! Limit on integral of char. function
’a Delta=.08 I Sampling increment on char. function
80 Bs=,.5#(2*%P1l/Deltad I Shift b, as fraction of alias interwval
90 Mf=2~1@ I Size of FFT

100 PRINTER IS @

110 PRINT "L =";L,"Delita =";Delta,"b =";Bs,"Mf =";Mf

120 REDINM Lambdac¢i:M),DC1iMY,NucCtiM),ACLIIM),BCL M), CCLIM)

130 REDIM X<(@:Mf-1>,Y(BiMF~1)

140 DIM Lambdad1:108>,D(1:18>,Nucl1:18>,AC¢1:18>,BC1:18>,CC1:1@)

150 DIM X(@:1823),Y(0:10823>

160 READ Lambdad(#),D{#>,Nucl#) ! Enter constants
170 FOR Ms=1 TO M ! Calculation
189 A(Ms>=2*Lambda(Ms> ! of parameters

198 B(Ms)>=(Lambda(Ms>*Nu(Ms>+D(Ms)r*¥Nu(Ms>
200 C(MsO>=,5#D(Ms)>~2
219 NEXT HMs

220 Mug=SUMC(Lambda>+SUM(B) ! Mean of random variable g
2306 R=8 ! Argument of square root
2406 P=1 1 Polarity indicator

250 Muy=Muq+Bs

269 X(B>=0

2708 Y(@>=.9%DeltaxMuy
280 N=INT{L-Deltad
250 FOR Ns=1 TO N

300 XizDelta#Ns

3ie Pr=1

Argument xi of char. fn.
Calculation

)
!
3208 PiasSr=5i=Q I of
330 FOR Ms=1 TO M I characteristic
340 Te~A(Ms ) #Xi ' function
350 CALL MUyl ¢(Pr,Pi,1,T,RA,B> 1 fydxid
368 Pr=AR
370 Pi=B

380 CALL Div¢(B(Ms),C(Ms%¥Xi,1,T,R,B)
390 Sr=Sr+A
409 Si=Si+B
410 NEXT Ms
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420
430
440
450
460
470
480
499
500
518
528
530
540
$50
560
570
580
590
600
610
620
630
640
650
660
670
680
699
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
868
870
880

D-2

CALL Exp(-Si#Xi,(Sr+Bs)>*Xi,A,B>
CALL Sqr(Pr,Pi,C,D>

Ro=R

R=ATNC(D-C)>

IF ABS(R~R0>>1.6 THEMN P=-P
CALL Div<(AR,B,C*P,D*P,Fyr,Fyi)
Ms=Ns MOD Mf
X(Msd>=X(Ms)+Fyr/Ns
Y{Ms)=Y(Ms)+Fyi-Ns

NEXT Ns

CALL FFft1Oz(Me, X(*),Y (%)
PLOTTER IS "GRRPHICS"
GRAPHICS

SCARLE O,Mf,~-14,0

LINE TYPE 3

GRID Mf 8,1

PENUP

LINE TYPE 1
B=Bs*Mf#Deltar(2x%PI>

MOVE B, 0

DRAW B,-14

PENUP

FOR Ks=0 TQO Mf-1
Ta¥Y(Ks)/PI-Ks/Mf

X(Kg)=.5-T

Y{Ks)=Pr=,5+T

IF Pr>=1E~12 THEN Y=LGT(Pr>
IF Pri{==1E~-12 THEN Y=-24-LGT{~-Pr>
IF ABS{(Pr)<{1E-12 THEN Y=-12
PLOT Ks,Y

NEXT Ks

PENUP

PRINT Y(@);¥C(1o;Y(MF=-2);Y(MFf~-1>
FOR Ks=06 TO Mf-1

Pr=X(Ks)>

IF Pro=1E~-12 THEN Y=LGT(Pr)
IF Pr{(==-1E~12 THEN Y=-24~-LGT{(-Pr>
IF ARBS(Pr)<1E-12 THEN ¥Y=-12
PLOT Ks,Y

NEXT Ks

PENUP

PAUSE

DUMP GRAPHICS

PRINT LINC(S)

PRINTER IS 16

END
!

Collapsing

@ subscript FFT

Origin for random variable q

Cumulative probability in X{(#)
Exceedance probability in Y(#*)




890
900
910
920
930
948
950
968
gve
980
990
1800
i101e@
1829
1830
1840
1658
10690
teve
1980
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240

SUB Mul(Xi,¥1,X2,Y2,AR,B>
A=X1*X2-Y1*Y2
B=XlxY2+X2%Y1
SUBEND

I

SUB Diwv(¥1,¥1,%2,Y2 A, B
T=X2#K2+Y2%Y2
Ax(X1#R2+Y1#Y20 /7
Ba(Y1#X2-X1%Y2)~T
SUBEND

]

SUB Exp(X,Y,R,;B)
T=EXP{(X>
A=T*COSCY)D
B=T*SINCY)

SUBEND

]

SUB SqriX,Y,RA,B>
IF X<>8 THEN 1110
R=B=SAR(.S*#RBS{Y)>
IF ¥<@ THEN B=-B
GOTO 1220
FaSOR(SQR(K#X+V YD)
T=,5%ATNC(Y XD
A=F*COSC(T>
BaF#SINCT?

IF X>@ THEN 1220
T=R

A=-B

B=T

IF v>=8 THEN 1228
A=-A

B=-B

SUBEND

{

SUB FFL1@z(N,X(#),Y(*))

TR 7035
! Z1%22

1 21,22

I EXP(2Z)

! PRINCIPAL SQR(2>

N <= 2~16 = 1024, N=2~INTEGER 8 subscript

D-3/D-4
Reverse Blank
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APPENDIX E. SIMULATION OF SECOND-ORDER PROCESSOR

This program simulates random variable x in second-order processor (8)
directly. The weights and statistics are entered in lines 30-130. A pair of
independent zero-mean unit-variance Gaussian random variables are generated in
lines 310-380. The sample cumulative and exceedance distribution functions
are computed in lines 510-590.

16 ! SIMULATION OF SECOND-ORDER PROCESSOR

20 Tt=100060 I Number of trials

30 K=5 ! Number of terms summed
40 DATR .6,-.5,.4,-.3,.2 ! alk)> weightings
50 DATA .9,.8,.7,-.6,-.3 | b(k) weightings
68 DRTR -.6,-.8,1,1.2,1.4 ! c(k)> weightings
7a DATA .1,-.2,-.3,.4,.5 | d(k> weightings
ga DRTA -.7,.6,.5,.4,-.3 | e(k? weightings
90 DRTA .2,.3,.4,-.5,-.6 | Means of random variables s(k>

1980 DRTA .8,-.7,~.6,.5,.4 | Means of random variables t (k>

118 DATA .1,.3,.9,.7,.9 I Standard deviations of s{k>

120 DATA .2,.4,.6,.8,1 t Standard deviations of t(k)

130 DATA .4,-.5,.6,.7,-.8 | Correlation coeffs. of s(k)> and t<(k)
140 REDIM AC1:K>,BC(1:K>,CC1i1K),DC1:K),ECLIKD

150 REDIM Ms(1:K),MtC¢1:K>,88¢1:K),St(1:K>,Rho(1:K>

160 REDIM A1C1:K)>,Be{1:iK),XC(1:Tt?

170 DI ACit1@>,BC1:10>,CC1:1@8)>,D(1:18>,E(1:18>

180 DIM Ms<1:10>,Mt(1:10),85¢1:10),51¢1:10>,Rho(1:18>

190 DIM A1C1:18)>,BeC1:10),X(1:100800)>

208 READ AC*),B(#),C(*)>,D(*#)>,E(*)

218 RERD Ms(#)> Mt (#), Ss(#),St(%),Rho(*)

220 FOR J=1 TO K

238 A1CI)=Ss(J)>#Rho(J)

240 Be(J)»=Sz(J)>*SAR(1~-Rho(J)>»2)

250 NEXT J

260 RANDOMIZE SQR(.6>

270 L=L0GC(. 25D
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280
290
300
319
320
330
340
3509
360
370
38@
390
400
410
429
430
449
450
460
4780
489
490
See
S10
520
530
sS40
SSe
560
570
S80
598
600
610

FOR I=1 TO Tt

X=0

FOR J=1 TO K

V1isRND-.S ! GENERATE TMO
V2=RND-.S ! INDEPENDENT
S=VIxV1+V2#Y2 ! GRAUSSIAN

IF §>.2% THEN 310 ! RANDOM
O=(L-LOG(S)>s8 ! VARIABLES VIA
A=SAR(A+Q) ! ACCEPTANCE
Gi=y1#qQ ! AND

Ga=V2#Q ! REJECTION
S=Ms (J)+R1(JI)*G1+BeJ)*G2

T=Mt (JI+St<(J)*G1

XX+ACIO#S2S+BCID#T*TH+C(I)2S#T+D(II#S+ECII*T
NEXT J

X(1)=X

NEXT 1

MAT SORT X

PLOTTER 1S "GRAPHICS®
GRAPHICS

SCALF -390,190,~4,0
GRID S,1

PENUP

FOR I=1 TO Tt
F=LOTCCI=. 57T
PLOT X<ID>,vY

NEXT 1

PENUP

FOR I=1 TGO Tt
Y=LGT(1-CI-,.%)/Tt)
PLOT X<(I),Y

NEXT 1

PENUP

END
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Exact Operating
Characteristics for Linear
Sum of Envelopes of
Narrowband Gaussian
Process and Sinewave

A. H. Nuttall
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ABSTRACT

The characteristic function of a linear sum of M independent Rice
variates is derived and evaluated exactly and then used in a numerical
procedure to determine the exceedance distribution function, as a
function of the threshold, the input signal-to-noise ratio (SNR), and M.
Plots of the detection probability and false alarm probability for a wide
range of SNR’s are given, for values of M up to 8192, In addition, the
required threshold values and input SNR’s are tabulated and plotted
for specific values of M, false alarm probability, and detection
probability. A program and explanation are included for those users
interested in extending results to their particular application.

Approved for public release; distribuition unlimited,




TR 7117

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS ...cevvennne tesescecanssearscscaresanrsenesanrenan ii
LIST OF TABLES suvvevvrncncanens Ceerencans Chereasecescatsartreasaretnnos iid
LIST OF SYMBOLS c.veveceavscnceacasacacsossssoaoanacsssnnnnasoas cheeneas iv
INTRODUCTION .vcveueneocnvaceansessnenscsasnsnsoansoansssassncsesosonsas 1
METHOD OF EVALUATION ..ccvinenncvnceceasnnas Cecicessacsesatestiesaroacnns 3

Characteristic Function Details c.veeerrrceecoecnceecacnecancnannes 3

Special Cases .cceevenes teeteeereetatastetstsareasarraeestsaaentes . 7

Asymptotic Performance for Large M ...cviieeiierernecrencennecnanss 8
RESULTS titireeeneeacveoasasossassscssonssssscssessssascsassanssassoonsas 11
SUMMARY toevvrrennsoannsse tesesescenans “heessascasssscssssscerraasestanys 33
APPENDICES
A. DERIVATION OF RICE CHARACTERISTIC FUNCTION ...cevevnnoncens ceseesnan A-1
B. DESCRIPTION OF PROGRAMS AND LISTINGS ..veeienivnsennssconnsancsnanes B-1
REFERENCES ...viveniniecenccnans cesenas Ceserserresesesteatactsansersansons R-1




TR 7117

FIGURE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

i1

Required Input S/N
Input S/N
Input S/N
Input S/N
Input S/N
Operating
Operating
Operating
Receiver Operating
Receiver Operating
Receiver Operating
Receiver Operating
Receiver Operating

Required
Required
Required
Required
Receiver
Receiver
Receiver

Receiver Operating
Receiver Operating
Receiver Operating
Receiver Operating
Receiver Operating
Receiver Operating

LIST OF ILLUSTRATIONS

fOT PD=-5 X
for PD=_9

for PD=.95
for PD=.99

Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Charactetistics
Characteristics
Characteristics
Characteristics

oooooo
ooooo

for PD=0999 evs e

Ses s s s ceos e

for M=l
fOT M=2 EEEEEE]
for M=4 EEREER]

-----

for M=32 ...
for M=64 ......
for M=128 .....
M=256 .....
M=512
M=1024 ....

L ]

for
for
for
for
for

2 e8>

for M=8192 ...ccevc.e

sso8 e s 00 P sen

..... LRI N N A B A )

s o000 a6

LR BN K B BE BN AN A ) LI N ]

4GB BB RRAGOS

....... LK R N A

PAGE

13
14
15
16
17
19
20
21
22
23
24
25
26
27
28
29
30
)}
32




TR 7117

LIST OF TABLES

TABLE PAGE
1. Normalized Thresholds Required for Specified M and PFA Cescesenes 12
2. Parameter Cards ...cccoeveee Cesrevsrscscansearetsascattoransesanoe B-5
3. Table Cards «vveeeeenees cecesssestracassenassactsascroreanrees oo B-5
8, File Cards scviviesecrsesoseansnsseoncsescssavansscsasscnns Cesereans B-5
5. Command Cards ...cevvevecans Cteceesuavantanans s enasessseansrennrs 8-5
6. Plot Device Cards ...cecevcvesosnanancans veecesesareestrsenaoanes B-6
7. Sample Input Deck for PD VS, PEp cverennnnns ceeerssnnnn Chesececan B-6
8. Sample Input Deck for SNR vS. M ..iiieenenccerecnaces teevseresenan B-~7
9. Sample Input Deck for Printing SNR ...... Cesecsstseseasnnecnncnasn B-7

10. Print Out of SNR vS. M t.viieencnsnnnnncs Ceecsersescsansecrennsona B-8
11. Description of Subroutines ...... fesesesssesnans teessecnesesnanns B-10

iii




TR 7117

LIST OF SYMBOLS

Number of independent envelope samples summed
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o Mean of random variable x
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Required input signal-to-noise ratio per-sample in decibels
Parameter incorporating specified Py and Ppp; (28)

W Q
[+~

iv




TR 7117

EXACT OPERATING CHARACTERISTICS FOR LINEAR SUM OF
ENVELOPES OF NARROWBAND GAUSSIAN PROCESS AND SINEWAVE

INTRODUCTION

The operating characteristics for a linear envelope-detector of a
sinewave in narrowband Gaussian noise, followed by summation of M independent
envelope samples, were presented in [1] and [2, sect. 8.3]. That approach was
based upon evaluation of the first 31 moments of the envelope variate and
their use in a type A Gram-Charlier series approximation, or in modified
approximations involving averages over different numbers of terms in the
series [1, pp. 758-9]. However, there are possible pitfalls to the above
approach. First, evaluation of very low exceedance probabilities, like
10"10, may be inaccurate; see [1, Fig. 1]. Second, the effect of a
systematic error would be hard to detect, if present, since the method yields
only an approximation to the exceedance distribution function, and not its
exact value.

We will use an exact approach here, based upon evaluation of the
characteristic function of the envelope detector output, from which the
exceedance distribution function can be precisely evaluated numerically
[3,4]. In this fashion, we avoid moment evaluations altogether; we can
evaluate false alarm probabilities in the 10"10 range easily (with double
precision computer arithmetic); and we can control truncation and aliasing
errors to any desired degree; see [3] for details. The results of [4] can not
be applied here because each independent envelope sample is the result of a
nonlinear operation, namely a square root, applied to a sum of two squares of

Gaussian random variables with non-zero means.

In the plots of detection probability vs. false alarm probability to be
presented herein, both abscissa and ordinate use the same normal probability
scales, regardless of the number of envelope samples M considered. This allows
for easier interpolation, and is in distinction to [1], where a different
false alarm probability abscissa was used for each M [1, pp. 759-62]. Also,
the parameter employed here for indexing the curves is a, a voltage signal-
to-noise ratio which is equal to the ratio of the sinewave amplitude to the
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rms noise level, rather than the dB parameter employed in [1]. This leads to
curves that are more nearly equally spaced, and therefore to easier and finer
interpolation capability.

Finally, we present five figures for the required input signal-to-
noise ratio per sample required to realize specified false alarm and detection
probabilities, as a function of M, the number of envelope samples added. The
five figures correspond to detection probability PDa,s, .9, .95, .99, and
.999 respectively, and each figure contains false alarm probabilities
PFA=10‘" for n=1(1)8. This total of 40 curves greatly augments the 2
cases presented in [1, Fig. 16] and {2, Fig. 8.18].

A program for the evaluation of the input signal-to-noise ratio
required for a specified set of values of M, pFA' and PD is furnished,
along with an explanation of its use. In this fashion, values of M, PFA’
and Pj intermediate to those considered here can be easily investigated.
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METHOD OF EVALUATION

Characteristic Function Details

in [3,4], a method of calculating the cumulative and exceedance
distribution functions directly from a given characteristic function was
presented. To utilize those results here, we need the characteristic function
of summation random variable

| M
X=2 em ’ (1)

m=1

where e, is the envelope of a narrowband filter output with a sinewave
signal of amplitude A and Gaussian noise of power 02_ Through proper
normalization, the probability density function of envelope e, takes the

familiar Rice form

( u2+02
pe(u) = U exp\- —5— Io(au) foru>0 |, (2)

where the single parameter

Q|x

(3)

is a voltage measure of signal-to-noise ratio per envelope sample. The power
measure of signal-to-noise ratio per sample is

2 2

N =TT ¢

The quantities in (3) and (4) will be referred to as input signal-to-noise
ratios, since they are per-sample measures, prior to the summation in (1)
which yields the output or decision variable x.

The characteristic function corresponding to random variable e in (2) is
given by Fourier transform
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ri Py 2, 2
fe( ) =\S‘du exp(i€u) pe(u) = j‘du u exp(ifu - !~%35) Io(au) . (5)
- 0

and will be called the Rice characteristic function. A series expansion for
(5) is developed in appendix A, and has been programmed in double precision
for numerical use here. As a particular special case, for a=0, no signal, we
have the Rayleigh probability density function and characteristic function:

péo)(u) =u exp(—uzlz) forus>0

2 1/2
7o)g) = exn(-g%2) [1F1(- 7 5 §—) +1(3) s} . (6)

The latter follows by use of [5, 3.896 3¢4] and via manipulution of the
hypergeometric function series along with Kummer's transformation (5, 9.212 1].
Formula (6) is particularly attractive numerically, since the series expansion
of 1F1 contains all negative terms except for one. It should be observed

that the imaginary part of Rayleigh characteristic function f£°)(g) in (6)
decays very rapidly with§; this useful feature will also be shared by the
Rice characteristic function, fe(f), and is due to the fact that the odd

part of the Rice probability density function in (2) is smooth for all u, and
is in fact entire in u, for any a. By contrast, the even part of the Rice
probability density function in (2) has a discontinuous derivative for real u,
thereby leading to slow decay of the real part of feq;).

The characteristic function of output variable x in (1), for
statistically independent envelope samples {em}, is given by

£8) = [f 7" (7)

in terms of the Rice characteristic function (5). This relation could be used
directly to find the exceedance distribution function of x according to

(3, (5)-(6)]

+o +® ¢ @)
Qx(u) = Sdt px(t) = % + Sdi Im{exp(—iu{) :f } . (8)

u 0+
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However, the slow decay of Re{fx(y)} prompts us to use a modified version
given in [6, (15)]:

+b
Q, (u) =;2'- i% cos(uf) Im{fx(}')} for u>0 . (9)

-+

This form is applicable to positive random variables, of which x, as given by
(1) and (2), is certainly a member.

To see why form (9) is preferred over (8), we develop (7) as

M
@) =06, ir @ =S O " @M L 0

m=0

where fr(;) and f;(§’) are the real and imaginary parts of Rice
characteristic function fe(;). Then

M m-1
wff, 5} =S 07 O " @™t (11)
m odd

contains fi(g) to at least the first power in all terms, thereby yielding a
rapid decay with §.

Development (11) has been used to show why Im{fx(;)} decays rapidly
with §. However, when we employ (9) in a numerical evaluation, we simply take
the imaginary part of the power in (7), and do not use (11) at all; (11) is an
alternating series of large terms for large M.

Actual numerical evaluation of (9) proceeds as follows [3]: for the
Trapezoidal rule with sampling increment A in §,

Q (u) = —[—u A Z %—cos(unA) Im{fx(na)}] R (12)

n=1
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where we used fx(})n'l + i“xf as §-+0. Then, restricting the u values to
a particular selection,

Q (g-”-n-‘) = gf ua + 2-1- cos(2mmn/N) Im{f (nA)}

X
n=1

N-1
= % Rez 2, exp(-i2mmn/N) (13)

n=0

N-1

where collapsed sequence [z is defined as

-0

?u I Z Im{fx(jNA)}

—
-.-

©
z, = Z F}"J'N Im{fx((n'*jN)A)} for 1l<n< N1 . (14)
3=0

Form (13) is particularly attractive since it can be accomplished via an
N-point FFT. It can be shown that only the values for 0 < m < N/2 are useful

n (13); the remainder are heavily aliased and wmust be discarded. Thus there
is a trade-off: use of only the imaginary part of fx(f) results in aliasing
twice as coarse. However, the rapid decay of the imaginary part far outweighs
the aliasing.

The summations in (12) and (14) cannot be conducted to infinity. Rather
the integral on § in (9) is terminated at limit L, where the truncation error
is gquaranteed to be sufficiently small. A trial and error procedure [3]
yielded the following rules which control the truncation and aliasing errors:

L = min (9, 17/VW),
A= 12//W,
b = min (0, -MYx/2 +{M's6). (15)

The inverse Vﬂ"dependence of L and & for large M can be anticipated by

observing that the characteristic function of random variable x in (1) then
6
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approaches a Gaussian function with argument proportional to M!e. The bias
(or shift) b is added tc random variable x in order to yield a new random
variable that remains just positive, even for large M; this allows us to take
maximum advantage of the fundamental aliasing interval (0, =/a) in u in (12)
and (13). The linear term (in M) of b in (15) is due to the mean of the
Rayleigh variate (for a=0) which is Y?77; the algebraic term in ¢/M is due to
the fact that the standard deviation of random variable x in (1) increases
according to VM.

In order to use this characteristic function approach, we also need the
mean of random variable x in (1). Using (2), this is given by [5, 6.631 1]

©

% g = A uu” exp(- —5— Io(au) =

1/2 2
M (3) exp( 2) ) 1(3, 1; %E) . (16)

This non-alternating series yields accurate values for the mean.

=
]

Special Cases

For general M, the characteristic function approach described above must
be used. However, for M = 1 and 2, closed form expressions for the false
alarm and detection probabilities are possible. Specifically, from (1) and
(2), for u > 0,

od

Pea = J;t Pa (t) = J;t t exp(-t2/2) = exp(-u2/2)
u

o0

2 2
J‘t t exp( I (at) = Q{a,u)
u

And for M = 2, the false alarm probability can be determined by convolving two
Rayleigh probability density functions of the form of (6), to give, for u > 0,

for M = 1. (17)
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Pep = exp(-u2/2) +Yru exp(—-u2/4)[Ifo-2-’) - %] for M = 2. (18)

Here, @ is the cumulative distribution function of a normalized Gaussian
random, variable:

u
YO fdt (2n) 7112 exp(-t?r2) . (19)
-0

The detection probability of random variable x in (1) is not available in
closed form for M > 1.

Asymptotic Performance for Large M

For large M, decision variable x in (1) is approximately Gaussian. The
mean of x was given in (16); a similar approach for the mean square of x
yields the variance as

2 2

o M

2 - M(2+aal) . (20)

The probability density function of x is then approximately

( ) 1 (U—ux)z (21)
p.(u) = expl- ——— |,
X v2w Ty Zox

with exceedance distribution function

o, (u) = 5(";‘:') - 5(4{/;:8) . (22)

For input signal-to-noise ratio S/N=0, we have a=0 from (4), and (22),
(16), and (20) specialize to

PFA -§(Mm’u (23)
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On the other hand, for S/N>0, (22) yields the detection probability PD_ We
now use the inverse function§ to definition (19) and solve (23) and (22)
according to

a Mu -u o
Mm~u =§(PFA) , "e ’§(pD) . (24)

W o

Eliminating threshold u in (24), we have

a §(Pp) = W(ue-ﬁ) A TR (25)

But also, for large M, the required per-sample input signal-to-noise ratio a
will be small, giving

2
w 1. 4,. a il a
e YTl - 22) o

2 2 2 "
ce=2+a—u852—? . (26)

Substituting these results in (25) and solving for a, we have the required
per-sample input signal-to-noise ratioc measures for large M in the alternative
forms

1/4 '1/2 1/2
o 23T 8 _ 8
a = 2("—-’) W- 1.446W >

d8 = 10 log %-s 10 109(;YE§ET>+10 log(8)-5 log(M) = .193+10 log(s)-5 log(M), (27)

where the single parameter

8 = g(PD) - §(PFA) (28)



TR 7117

incorporates the specified false alarm and detection probabilities. (27)
displays the familiar 5 log M decibel decay for large M associated with the
incoherent addition in (1); see also [2, p. 279, Ex. 8.8].

10
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RESULTS

For a given value of M, the output variable in (1),

‘- ﬁem , (29)

m=1

will exceed threshcld u with false alarm probability PFA when signal-to-noise
ratio a is zero. That is

Pea = Prob(x>u| a=0; M). (30)

For specified values of M and Pg,, this relation can be solved numerically
for u; the values of normalized threshold u/M are listed in table 1 for
M=2", n=0(1)13 and for P,=107", n=1(1)8.

The detection probability depends on threshold u, M, and signal-to-noise
ratio a(>0):

Pp = Prob(x>u | a; M). (31)

For specified values of M, PD, and u, this relation can be solved

numerically for the required input signal-to-noise ratio a. When the
threshold results in Table 1 are employed, the results yield the required
input signal-to-noise ratio for specified false alarm probabllity and detection
probability at a particular M. These are plotted in figures 1-5 for

PD = .5, .9, .95, .99, .999, (32)
respectively. The abscissa is logyM, and the ordinate is in decibels, as

defined in (27). The fit of (27) is very good for large M, especially for

the larger Pp, values. These results in figures 1-5 greatly extend the one
in {1, Fig. 16] and [2, Fig. 8.18].

11
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Table

12

1.

Normalized Thresholds Required for Specified M and P

1g~-1

2+14596603
1.87154046
1.684%91449
1.55592564
1.465605729
1.40314416
1.35896377
1.32787317
1,30596258
1.29050601
1.27959472
1,27188832
1,26644357
1.26259560

1E-5

4.79852591
3.638174649
2.884639585
2.36734857
2.01795589
1.781416235
1.62006566
1.50917003
1,43244244
1.37906412
1.34176981
1.,31562790
1.29725887
1.28432858

1E-2

3.03485424
2,46578148
2.08494224
1.82779134
1.65244898
1,53192213
1.448446093
1.39035933
1.34974198
1.32125803
1.30123656
1.28713956
1.27720181
1.27018998

1E-6

5.25652177
3.97074674
3.09755766
2.50933450
2.11363347
1.8462900%5
1.66438962
1.53967893
1.45357274
1.39378248
1,35206123
1,322844604
1,30233301
1.28790149

1E-3

3.71692219
2.92459903
2.39281962
2.03544098
1.79362769
1.62866385
1.51524477
1.43673968
1.38210498
1.343%92160
1.,31715039
1.,29833595
1.28509047
1.2757538S

1E-7

5.67769243
4.,25904998
3.29282208
2.,64073842
2,20209577
1.,90615996
1.70520835
1,567 1937
1.,47297024
1.40726893
1.,361481446
1.329447%98
1.30697131
1.29116614

FA

1E-4

4.291932095
3.31372579
2.65432267
2.,211343522
1.,91266565
1.70984877
1.57104117
1.47534630
1,40896493
1.,36268942
1,33030674
1.30758095
1.29159844
1.28034098

1E-8

6.06970852
4,528061353
3.473544423
2.76376208
2.28487498
1.,96210527
1.74328423
1.59383081
1.49100181
1,41979378
1.37022180
1.33556910
1,31126956
1.2941902¢9
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The results in figures 1 through 5 only cover a selected set of detection
and false alarm probability values. A more complete description is afforded
by the receiver operating characteristics, namely detection probability vs.
false alarm probability, with signal-to-noise ratio as a parameter. In
figures 6 through 19 are given these operating characteristics for

M=1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, (33)

respectively. The false alarm probability covers the range 10"10 to .5,
while the detection probability covers 10'10 to .999. Both abscissa and
ordinate in these figures employ the inverse function to the Gaussian
cumulative distribution function § defined in (19); thus, a truly Gaussian
random variable would plot as a series of equally spaced parallel straight
lines (with parameter a). Observe that the curves are neurly equally spaced
with parameter a, except for very small a, where the nonlinear envelope
operation causes small signal suppression and a crowding together of the
curves.

If the decision variable x is presumed Gaussian, and the operating
characteristics overlayed on the exact results in figures 6-19, it is found
that the two sets of curves for M=8192 are virtually identical in the range of

PFA and Pp plotted. However, for M=16, the Gaussian approximation is
somewhat optimistic; for example, the exact curve for a=2.75 is well-

approximated by the Gaussian approach for «=2.62. For small M, the Gaussian
approximation is overly optimistic for small PFA; however, the two sets
Cross near PFA”-S' which is not a practical range of interest anyway.

|8
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SUMMARY

A method for exact evaluation of th. exceedance distribution function, of
a linear sum of M envelopes of a narrowband Gaussian process and sinewave, has
been utilized to determine the receiver operating characteristics for a wide
range of values of M and signal-to-noise ratio. Also, the required input
signal-to-noise . atio vs. M has been determined for a selected set of false
alarm and detection probabilities. Programs are also supplied by which other
values of the various parameters can be investigated by the user.

Agreement between the current results and those in [1,2] is very good
over the range of common values plotted. For M larger than 8192, the
approximation given in (27) and (28) is recommended, since the summation
variable is then well represented by a Gaussian random variable.

33/34
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APPENDIX A. DERIVATION OF RICE CHARACTERISTIC FUNCTION

The normalized probability density function of a Rice random variable was
given in (2) as

u2+u2
pe(u) = u expi- — Io(au) for u>0 . (A-1)

The corresponding characteristic function is

o0 +o8

2, 2
fe(f) =jdu exp(ifu) pe(u) =Jdu u exp (i!u -4 2“) Io(au) -
By ™) u n - 0
= exp(-r) 2 MZL fdu u2n+1 exp(i}u—u2/2) . (A-2)
S LED R

where we have expanded I in a power series [5, 8.447 1] and defined power
signal-to-noise ratio

r=dj2 . (A=3)

(If desired, a power series in ¥ could be developed by expanding exp(ifu) in a
power series instead of IO,)

We define

o

1 \(du u2n+1 exp(ifu - u2/2) forn>0 , (A-4)
b

C T S
n(:) zn(n:)Z

and get the characteristic function series
od
F ) = exp(-r) > " C () . (A-5)
n=0

In order to get a recurrence on Cn(f), we also define

Y

Bk(f) = fdw Wk exp(ifw - w2/2) for k >0 (A-6)
°
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for then

Bye (5)
ColF) = 2 (A-7)

2"(nt)
By integrating by parts on (A-6), there follows

B, = 8,y * (k-1)B _, fork>1 . (A-8)

This recurrence can be started with [5, 3.896 3£4]

B0 = exp(_¥2/2)[wz'-‘+ i§ 1Flé; %; %E)] . (A-9)

By looking at three adjacent terms of recurrence (A-8), we can generate
the alternative recurrence

B, = (2k-3-F)B,_, - (k-2)(k-3)B,_, . (A-10)

By means of (A-7), this translates into

1
1 1+ n-3
Ch =2 [é" - —zé) Col = T Cn-Z] form22 . (A-11)

Starting values are (via manipulation of hypergeometric series and Kummer's
transformation) expressable as

2 ’
Cy = exp(-SZIZ) [1':1(" -%-; %; §—) + i}/??] ,
¢; = exp(-§%/2) [IFI(' 3 % ;) . iY—’;(3—§2)-£—]. (A-12)

Each of the series for 1F1 consists of terms of the same polarity, except
for one term, and are therefore useful for obtaining very accurate initial

values. Cj is the characteristic function of the Rayleigh probability

A-2
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density function. Relations (A-11)-(A-12) constitute recurrences on both the
real and imaginary parts of Cn’

It was found that the terms exp(-r) r"

in (A-5) became very large for
large n, while the CnQF) terms became very small. In order to avoid

overflow and underflow, we defined the total term

A, = exp(-r) o c.@® . (A-13)

Reference to (A-11) readily yields the recurrence on A,s and (A-12)
furnishes corresponding obvious starting values for A0 and A;.

A-3/A-4
Reverse Blank
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APPENDIX B. DESCRIPTION OF PROGRAMS AND LISTINGS
Overview

Information obtained via evaluation of the Rice characteristic function
may be displayed in three formats.

FORMAT 1: Display PD vs. PFA

The user defines the number of samples M and the range of values for
alpha, a voltage signal-to-noise ratio measure. An algorithm then utilizes
the Rice characteristic function for alpha=0 and for the alphas specified by
the user. This results in the production of a threshold vs. PFA and M
(alpha=0) and threshold vs. PD and M (alpha>0) tables. These two tables are
stored on an output file. For each user-defined M, a plot routine displays PD
vs. PFA for the set of user-defined alphas.

FORMAT 2: Display SNR vs M

The user supplies the input which specifies a PD. The algorithm then
solves for the threshold values corresponding to PFA=10**(-IPFA),
(IPFA=1,..,8) and M=2**IM, (IM=0,...,13) and alpha=0. A root finding
technique is then employed to solve for the SNR defined by a threshold value
and user-defined PD. An SNR is found for each threshold value. The results
are stored in an output file. A plot routine displays the required SNR vs. M
for PFA=10**(-IPFA), (IPFA=1,2,...,8).

FORMAT 3: Print SNR
The user specifies a value for PD, PFA, M. The program solves for the
threshold corresponding to PFA and M. A root finding technique is then

employed to determine the SNR corresponding to this threshold and user-defined
PD and M. The results are printed.

B-1
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Description of Input

Inputs to the program consist of cards which either specify values
(PARAMETER CARDS), activate the reading of tabularized values (TABLES), assign
files (FILE NAME CARDS), process data (COMMAND CARDS), or specify a plot
device (PLOT DEVICE CARDS). The basic format of a card is

CARD NAME = value units

where CARD NAME is an alphanumeric expression from Tables 2-6. The
alphanumeric must begin in column 1, value is a floating point or integer
number, and units is an alphanumeric.

Parameter cards, file names, and tables constitute the data upon which
commands operate. If two cards with the same name specify different data,
then the last entry overrides the other.

For the programmers convenience, FORTRAN variable names associated with
file names or parameters may be located in the Tables 2 through 6. Since
input and values stored represent the same physical guantity, it is convenient
to refer to both in this paper by the same variable name. The convention
adopted is to express the variable by the lower case letters and reserve upper
case letters for constants.

Parameter Cards

Parameter cards are used to specify an axis length or assign a range of
values to a parameter. These cards are shown in Table 2. For example,

NUMBER OF SAMPLES MINIMUM = 1.
NUMBER OF SAMPLES MAXIMUM = 8192.
NUMBER OF SAMPLES FACTOR = 2.

implies that the program will process data for M=1,2,4,8,16,....,4096,8192.
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Table Cards

A table card contains the values that are to be assigned to a variable.
The last card that must appear in a table is an EOF card. This card
terminates the reading of the table. Table cards exist for PD and PFA only.
A list of the table cards appears in Table 4. For example,

PROBABILITY OF DETECTION TABLE
.5
.7
.99
EOF

This table assigns values of .5, .7, .99 to PD.
Files Cards

A file card allows for dynamic assignment of all mass storage files.
This is accomplished by linking internal FORTRAN unit numbers to files during
execution. The file card is shown in Table 4. Two of the three algorithms

use files. They are

Display PD vs PFA : A file is used to store output.
Display SNR vs M : A file is used to store output.

For example,
QUTPUT FILE = PDFILE
directs the output of a program to a file called PDFILE.

Command Cards

Command cards are uued to compute, plot, or terminate a run stream.
Command cards are given in Table 5.

B-3
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Plot Device Cards

Plot device cards direct the plot output to either a TEKTRONIX, FR80, or
a CALCOMP plotter. The cards necessary for that operation are shown in
Table 6.

Examples of Qutput

Example 1: Display PD vs PFA

The input deck for the first example appears in Table 7. This deck
designates that PD vs, PFA data will be computed for M=1 and
alpha=.5,1.0,1.5,...,9.5. The output is stored on a file called FILEL. The
plot corresponding to the data is shown in figure 6. The second half of the
run stream computes PD vs. PFA data for M=2 and alpha=0.,.4,.8,...,7.2. The
output is stored in FILE2. The plot of the data appears in figure 7.

Example 2: Display SNR vs. M

The input deck for the second example appears in Table 8. The first half
of the input deck designates that the SNR vs.M plots will be computed for a
value PD=.5. The output is displayed in fiqure 1. The parameter cards
specify that the axis will be scaled as follows: -19 DB (minimum), 13 DB
(maximum), 2 DB (increment), and 5 inches long for the SNR axis and 6.86
inches long for the number of samples axis. It should be noted that the
Timits for the number of samples axis are predefined by the program to be 1
(minimum), 8192 (maximum), 2 (factor). The output is stored in a file called
PDFIL1. The second half of the run stream computes SNR vs. M for a value
PD=.9. The axis limits for SNR were changed to -17 DB {(minimum}, 15 DB
(maximum), 2 DB (increment). Alpha curves were computed for
alpha=0.,.4,.8,...,7.2. This output is stored in file PDFIL2. A plot of this
data appears in figure 2.

Example 3: Print SNR

The input deck for the third example appears in Table 9. The output
appears in Table 10.
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TARLE 2. PARAMETER CARDS

o ———— e e G T A bt et GO WP WY WY M mas G WA N0 Mia e Uas M P M e e T e Lt et W G T Ges Sl Ve W MRS M e WS e e e e W e dme WA

INFUT CARDS UNITS
SNR AXIS LENGTH = snraxs IN
SAMPLE AXIS LENGTH = smraxs IN
PR AXIS LENGTH = pdaxus IN
FFA AXIS LENGTH = rfaasxs IN
SNR MINIMUM = snrmin IR
SNR MAXIMUM = snrmax DR
SNR INCREMENT = snrinc DR
ALFHA MINIMUM = alermin

ALPHA MAXIMUM = alepmax

ALFHA INCREMENT = alrinc

NUMBER OF SAMFPLES MINIMUM = smepmin
NUMRER OF SAMPLES MAXIMUM = smepmax
NUMBRER OF SAMPLES FACTOR = smpfct

TABRLE 3. TABLE CARDS

ey e Gt e oy ey el et G AN G R WSS W G M e Shm S M e M S SO be et e WS Y B B SN A M e S S T e G PR O S e v G b S e G e e

INPUT CARDS VARIABLE
PRORARILITY OF DRETECTION TABLE PD
PROBARILITY OF FALSE ALARM TARLE PFA

TARLE 4., FILE CARDS

—— e el B G NS e Fp Seee W S e o e o o v

A -y o ot ey T T - A Tma s s WD W

DUTPUT FILE = name

TARLE 5. COMMAND CARDS

e G . S A SOV . o S " —

vt e wess me Skl G td e W LFR WAS ey e M bt Bm o ot

RUN MAIN

COMPUTE PD VS PFA
COMPUTE SNR VS M
PLOT PD V8 FFA
PLOT SNR VS M

END
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TABLE 6., FLOT DEVICE CARDS

I A TR et S WSt et s W T Goee M e e WA WS D S NS T vt fom e e NN Mk b Y W G M e e e e A e e WRY W G W W ML A SN e e W e v SO S S Y WA W A Y e v A o e -

S ot O o n e mes WV awy Smm N Wm e WS b Gmb GO G A ek AR M A G G WA NEE W i W e T AP M e T NS S MW MY G M ML e Gt e e A e M TR W S G MR A we s 0 e WAt e e e S

BAUD RATE = 940,

PLOT DEVICE = device FRB0» TEKTRO»CALCOMP
RESET PLOT DEVICE

TABRLE 7. SAMPLE INPUT DECK FOR PR VS PFA

RUN MAIN

BAUD RATE = 960.

FLOT DEVICE = TEKTRO
RESET PLOT DEVICE

FD AXIS LENGTH = 6.86 IN
FFA AXIS LENGTH = 5, IN
ODUTPUT FILE = FILE1
NUMRER OF SAMPLES MINIMUM =
ALPHA MINIMUM = ,S
ALPHA MAXIMUM = 9.5
ALPHA INCREMENT = .5
COMPUTE FD VS PFA

PLOT PD VS PFA

OUTPUT FILE = FILE2
NUMBER OF SAMPLES MINIMUM
ALPHA MINIMUM = 0,
ALPHA MAXIMUM = 7,2
ALPHA INCREMENT = .4
COMPUTE FD VS PFA

PLOT PD VS FPFA

END

H
fwe

L
[
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TABLE B, SAMPLE INPUT DECK FOR SNR wvs M
RUN MAIN
BAUD RATE = 960.
TEMFORARY FILE = FALSE
PLOT DEVICE = TEKTRO
RESET PLOY DEVICE
OUTPUT FILE = PDFIL1
SNR MINIMUM = -19, DR
SNR MAXIMUM = 13. DR
SNR INCREMENT = 2. DR
SNR AXIS LENGTH = 3. IN
SAMFLE AXIS LENGTH = 6.86 IN
FRORARILITY OF DETECTION TARLE

v 3

EOF

COMPUTE SNR VS M

PLOT SNR VS M

OUTPUT FILE = PDFIL2
SNR MINIMUM = -17, IR
SNR MAXIMUM = 15, DR

SNR INCREMENT = 2. DR
PRORARILITY OF DETECTION TARLE
P

EOF

COMFUTE SNR VS M

PLOT SNR VS M

END

TAERLE 9. GSAMPLE INPUT RECK FOR FRINTING SNR

RUN MAIN

PROBRARILITY OF DETECTION TABRLE

v 3

+ 9

EOF

FRORARILITY OF FALSE ALARM TARLE
1

+001

EOQF

NUMBER OF SAMFLES MINIMUM
NUMRER OF SAMFLES MAXIMUM
NUMBER OF SAMFLES FACTOR = 2
PRINT SNR

END

i n

1.
2048,
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Listing of Program

This section contains a listing of three master programs and associated
subroutines. Subroutines which read input and plot the output have been
omitted. Table 11 contains a 1list of the subroutine names and a brief
description of the pertinent subroutines.
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NAME

CMPDVA
CMPSVS
FPRTSNR
FFT
RDC
FNPI
FNFF

FNF11
RICE

FNIPHI

DIST

B-10

TARLE 11, DESCRIPTION OF SUBROUTINES

DESCRIPTION

— @ S e . M 0t B B wme

MASTER FPROGRAM FOR COMPUTING FD VS PFA

MASTER FROGRAM FOR COMPUTING SNR VS M

MASTER FROGRAM FOR COMFUTING AND PRINTING SNR
COMPUTES THE FAST FOURIER TRANSFORM OF A FUNCTION
COMPUTES AN AFPROXIMATE S/N FOR A GIVEN FDs PFAs M
(SEE REF 7))

COMFUTES THE FRORARILITY OF DETECTION FOR A GIVEN
M» S/Nr: AND THRESHOLD

COMPUTES THE FROBARILITY OF FALSE ALARM FOR A GIVEN
M AND THRESHOLD

COMFUTES THE CONFLUENT HYPERGEOMETRIC FUNCTION
COMFUTES THE CHARACTERISTIC FUNCTION OF A RICE
VARIATE

COMFUTES THE INVERSE OF THE CUMULATIVE GAUSSIAN
DISTRIBUTION

COMPUTES THE EXCEEDANCE DISTRIRUTION FUNCTION FOR
A GIVEN M AND S/N




100

350

375

400
500
600

700

SURROUTINE FFT(NsXsY)

IMPLICIT DOUBLE FRECISION (A-H,0-2)

RIMENSION C(O:2586)»X(021023),Y(021023)»LC03)
RATA PI/3,1415926535897932400/

T=2,D0KPI/N

J1=N/4

ng 100 J=0,J1
C(L=DRCOS(TROFLOTIC(I))
CONTINUE

N1i=N/4

N2=N1+1

N3=N2+1

N4=N3+N1
L2=JIDINT(1.442700%DLOG(OFLOTI(N) I +.5D0)
D0 600 I1=1s12

I2=2%%(L2~-I1)

I3=2D0%I2

I4=N/13

DO 500 IS=1.,12
I6=T4%(IS5-1)+1

IFC I4.LE.N2 ) 60 TO 350
Vo=~C(N4~16~1)
U7=-C{I6-N1-1)

G0 TO 375

V6=C(I16-1)
VU7==C(N3~-16-1)

L3=N-I3

no 400 I7=0sL3,13
I18=17+15

I9=I8+12
UB=X(IB-1)-X(I9~1)
Ve=Y(I8~-1)~-Y(I?-1)
X(I8-1)=X(I8-1)+X{(I%~-1)
Y(I8-1)=Y(IB-1)+Y(I%?~1)
X(IP-1)=YsXUB-V7%Y?
Y(I9-1)=V6%kVUP4+V7%VUB
CONTINUE

CONTINUE

CONTINUE

T1=L2+1

ng 700 12=1,10
L(I2-1)=1.00

IF( I2.6T.L2 ) GO TO 700
LCTI2-1)=2%%(X1-1I2)
CONTINUE
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ICO=L(0)
IC1=L(1)
IC2=L(2)
IC3=L¢(3)
IC4=L(4)
ICS=L(5)
ICé6=L(4)
IC7=L(7)
IC8=L(8)
IC9=L(9)

=1
gD 1900 I1=1,IC9
DO 1800 I2=I1,ICB,ICY
DG 1700 I3=12,IC7,1C8
DO 1600 14=I3,ICésIC7
DO 1500 IS=I4,ICSyICS
DO 1400 I6=I5,IC4sICS
DO 1300 17=14,1IC3,1IC4
RO 1200 I8=I17,IC2,1IC3
RO 1100 I19=I18,IC1,IC2
DO 1000 I10=19,IC0,IC1
J=I10
IFC K«GT.J ) GO TO 900
A=X(K~-1)
X{K-1)=X(J~1)
X(J-1)=A
A=Y (K-1)
Y(K-1)=Y(J-1)
Y(J-1)=4A

200 K=K+1

1000 CONTINUE

1100 CONTINUE

1200 CONTINUE

1300 CONTINUE

1400 CONTINUE

1500 CONTINUE

1600 CONTINUE

1700 CONTINUE

1800 CONTINUE

1900 CONTINUE

RETURN
END
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SURROUTINE FNFD(ALPHAsVU>AMsAL,»ADSARS,PD)
IMPLICIT DODURLE FRECISION (A-H,0-2)
DATA PI/3,1415926535897932400/

SNR=,5DOXALPHAXALFHA

CALL FNF11(1.5R0s1.D0ySNRsF11)
FAC=DNSQRT( .SNOKPIIXEXPF(-SNR)I¥%F11
AMUY=AMXFAC+ARS

AM2-AM/2.,D0

VD=VXAD

EXC=,3%ADRXAMUY

NS1=JIDINT(AL/AD)

DO 100 NS=1sNS1

XI=ADXNS

CALL RICE(XIsSNR>»FRsFI)
A=DATAN2(FI»FR)
FYI=DSIN(AMKA+ARSRXIIK(FRAFR+FIKFI)XXAM2
ADD=FYIXDCOS(VIOXDFLOTJ(NS))/DFLOTJ(NS)
EXC=EXC+ADD

CONTINUE

PR=2,D0REXC/PI

RETURN
END

SURRDUTINE FNPF(VUsAMsAL AN ARS,,PF)
IMPLICIT DOURBLE FRECISION (A-Hs0-Z)
DATA PI/3.,1415924335897932400/

FAC=DSQART(.SNOXPI)

AMUY=AMXFAC+ARS

AM2=AM/2.D0

VD=UXAD

EXC=.0kARXAMUY

NS1=JIRINT(AL/AD)

N0 100 NS=1sNS1

XI=ADKNS

X2=,5N0%XI¥X1I

E=EXF (-X2)

CALL FNF11(-.500,.5D0yX2,F11)

FR=E%F11

FI=EXFACKXI

A=DNATANZ2(FIsFR)
FYI=DSIN(AMXA+ARSKXI)IK(FRXFR+FIKFI»XKKAM2Z
ADD=FYIXDCOSC(VDRDFLOTI(NS) ) /DFLOTJ(NS)
EXC=EXC+ALID

CONTINUE

PF=2.DOKEXC/F1I

RETURN
END
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100

101
200

100

300
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SURROUTINE RDC(AMsFFsFDsALFPHA)
IMPLICIT DOURLE PRECISION (A-H»0-2)

A=DLOG(.62D0/FF)

R=DLOG(PR/(1.00~FD))

FACT=6.2D0 + 4.54D0/DSART(AM+.440D0)
SNRDR=-5,DOXDLOGI10(AMY + DLOG10O(A+.12DOXAXE+FL1 . 7DOXRIXFACT
ALPHA=DSQRT(2,.00%X10 . DO0O%%( , INOXKSNRIDR) )

RETURN

END

SURROUTINE FNF11(AsRsXsF11)
IMPLICIT DOURLE PRECISION (A-Hs0-2)

F11=1.D0

T=1.D0

Do 100 K=15300

U=K-1

T=TX(A+UI XX/ ((B+UIXRK)

F11=F114T

IF( DARS(T).LE.DARS(F11)%1.D~18 > GO TO 200
CONTINUE

PRINT 101

FORMAT(2X5 300 TERMS IN FNF1i1°‘)
CONTINUE

RETURN
END

SUBROUTINE FNIFHI(XsFHI)
IMPLICIT DOURLE FPRECISION (A~-Hs0-2Z)

Y=DMAX1(X>1.D~-12)

Y=DMIN1(Y»1.010-1,D~12)

D=X-.300

IF{ DARS(D).BGT. .01D0 ) GO TO 250
PHI=2.50646282746300,.0%(1,D0+IkN%1,0471975512000)

G0 7O 300

PHI=Y

IFC Y.GT., .5D0 ) PHI=,3DO0~(Y~,500)
PHI=DNSART(~-2.NOXNLOG(PHI))
T=1.BO+PHIX(1.432788D0+PHIX(.1892569D0+FHI%.00130810))
PHI=PHI-(2,515317D0+FHIX(.80285300+FPHI%.010328D0))/T
IFC Y.LT. 500 ) PHI=-PHI

RETURN

END
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SURROUTINE DIST(AMsALPHASMF»XyY)
IMNFLICIT DOURLE FRECISION (A-H»0-2)
DIMENSION X(0:1023)» Y(0:1023)
COMMON /PDVFF/ALyADsARS

DATA PI/3.14159246535897932400/

SNR=,.5DOXALFHAXALFHA

CALL FNF11(1,5D0s1.DR0s8NR»F11)
AMU=DSART (. SNOXPIIXRDEXF (~-SNRIXF11
AMUS=AMXAMU+ARS

AM2=AM/2.010

N0 100 I=0,1023
X(I)=0.D0
Y(I)=0.D0

100 CONTINUE

X(0)=,3D0XAMUSXARD
NS1=JIDINT(AL/7AD)
DO 1000 NS=1sNS1
XI=ADXNS
CALL RICE(XI»S5NRy»U»V)
T=DNATANZ2 (V1)
FI=DSIN(AMXTH+ARSRXI D)X (UKU+VRVIXRAM2
MS=JHOD (NS s MF)
X(MS)=X(MS)+FI/NS
1000 CONTINUE

CALL FFT(MFsX»Y)

FAC=2.10/P1I
KS81=MF/2.D0
DO 2000 KS=0,KS1
T=X(KS)%FAC
X{KS81)=1.,00-T
Y(KS)=T

2000 CONTINUE

RETURN
END
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100

101
200
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SURRDUTINE RICE(XsSNRsFR»FI)

IMPLICIT DOURLE PRECISION (A-H»0-2)

DATA FI/3,14159265358979324D0/

X2=,3NORX %Y
E=REXP(-X2-8NR)

LCALL FNF11(-.,5D0y.5D05X2,F11)

AQR=E%XF11
ACI=EXDSQRT(.SDOXPI) %X

CALL FNF11(-1,500,,5D0sX2,F11)
ANR=EXSNR%XF11
ANI=SNRX(1,5D0-X2)¥A0I
FR=AOR+ANR

FI=ADI+ANI

BR=DMAX1(DARS{AOR) »DARS(FR))
BRI=DMAX1(DARS(ADBI)»DARS(FI))
T=.300+X2

SNR2=8BNR%X2

DO 100 N=2,200

FO=N%%2

F1=SNRX(N+N-T)/FO
F2=8NR2X(N-,.5D0)/((N-1)%FO)
R=F1XANR~F2%A0R
V=F1XANI-F2¥%A0I

AOR=ANR

AODI=ANI

ANR=R

ANI=V

FR=FR+R

FI=FI+V
RR=DMAX1(RRsDABRS(FR))
RI=DMAX1(RIsDARS(FI1))

IF{ DARS(V),LE,S.D-19%DARG(FI)
GO TO 200

CONTINUE

FRINT 101
FORMAT(2Xs 7200 TERMS IN RICE’)
DR=1B.,~-DLOG10(DABS(RR/FR))
hI=18,-DLOG10(DARS(RI/FI))
RETURN
END

+AND.,

DARS(R) .LE.S5.D-19%DARS(FR))
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SURROUTINE CMFDVA

PARAMETER MF=2%%10
PARAMETER FRINUM=18
ROURLE FRECISION ALsADABRS,RSAsAMSALPHA»ALFASX(011023),Y(011023)
PARAMETER (NUMFIL=30)
CHARACTERXS FILES(NUMFIL)
COMMON /FILEC/FILES
CHARACTER%X6 FRDNAM
EQUIVALENCE
(FRONAMFILES(18))
PARAMETER (NUMFPAR=200)
COMMON /FARAMC/FPARAMS (NUMFAR)
EQUIVALENCE
(SMPMINsPARAMS(187)),
(SNMIN»PARAMS(1B4))» (SNMAX,PARAMS(183)), (SNDEL,FARAMS(186))
COMMON/FDVPF/AL y Aty ARS
DOUBLE FRECISION FI
DATA PI/3.1415926535897932400/

OPEN THE FILE

CALL OPNFIL(PRDONUMyPBIONAM)
COMPUTE THE NUMBER OF SNR CURVES
NSN=(SNMAX~-SNMIN)/SNREL + 1

STORE HEADER INFO
WRITE(PBINUM) SMFMINsSNMIN,SNMAX»SNDEL »NSN

AM = SMPMIN

AL = DMINI(?.D0+17.DO/0BQRT(AM))

Al = L,12DO/DSART(AM)

RSA = -DSART(PI/2.N0%AM + &6.DOXDSART(AM)
ARS = DMIN1(0.DOyRSA)

COMFUTE SNR VS PFA
ALFA=0.D0
CALL DIST(AM>ALFAsMFsXsY)

STORE THE SNR VS PD
WRITE(PRDONUM) (Y(I)»I=0,512)

D0 1000 ISN=1sNSN
SNR= SNMIN + SNDELXC(ISN-1)

ALPHA = SNR
CALL DIST(AMyALPHArMF s XrY)

STORE THE SNR VS8 PID
WRITE(PRIONUM) (Y(I)»I=0,512)

CONTINUE

CONTINUE

B-17
RETURN

END
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300
325

400

500
550

SURROUTINE PRTSNR
IMPLICIT DOURLE PRECISION (A-H»0-2Z)
DIMENSION FFA(10)»PD(10)5V(14,8),8NR(14,8)
DATA PI/3.14159265358979324N00/
REAL SMFPMIN,SMFPMAXsSMPFCTsPARAMS
FARAMETER NUMPAR=200
COMMON/PARAMC/FARAMS (NUMPAR)
EQUIVALENCE
(SMPMINsPARAMS(187)) s (SHPMAXsFARAMS(188))s (SMPFCT»PARAMS
COMMON/PDPF/NPRsNPFAYPRsPFA

MMAX=ALOG10{(SHFMAX/SMPMIN)/ALOGL1O(SMPFCT) + 1

F1=DSART(.SNOXFI?
F2=DSART(2.D0~.5SDOXPI)
DO 1000 IM=1sMMAX
AM=SHPMINKSMFFCTRXR(IM-1)

AL = DMINI(?.D0,17.D0/DSART(AM))

AD = L,12DRO/DSART(ANM)

BRSA = ~DSOART(FPI/2.D0)%AM + 6.DOXDSQRT (AM)
ARS = DMIN1(0.DROsBSA)

AMU=F 1 XAM

SIG=F2%XDSART (AM)

DO 900 IFF=1,NFFA

PF=PFA(IPF)

IF( AM.GT., 1.D0 ) GO TO 250
UN=DSQRT (-2, XDLOG(PF))

60 TO 750

CALL FNIPHI(PF,YF)
V1=AMU-SIGRYF+ARS

IF( IPF.G6T,.1 ) V1=DMAX1(V1sUN)
V2=Y1+,5D00

IFC VI.NE.UN ) GO TO 300

P1=PN

GO TO 325

CALL FNPF(V1sAMsALsADsARSsP1)
CALL FNPF(V2sAMsALs»AD»ARS,P2)
IF( DABS(F1-PF),LT.DARS(P2-FF) ) GO TO 350
vo=v1

PO=F1

UN=Y2

PN=F2

GO TO 400

vo=y2

PO=P2

UN=Y1

PN=P1

CALL FNIPHI(PO,YO)

60 TO 550 .

CALL FNPF(UNsAMsALsADsARS,PN)
CALL FNIPHI(PNsYN)

IF( DABS(PN~FF).LE.1D~9%PF ) 6O TO 750
T=(VOR(YN=YF)+UNK(YF~Y0))/(YN-YO)




750
200
1000

2400

2500
2550

2750
2900
3000
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VO=UN

YO=YN

UN=T

GO TO 500
V{IM> IPF)=UN
CONTINUE
CONTINUE

Do 4000 IPD=1,sNPD

CALL FNIPHI(FR(IPD),YD)

DO 3000 IM=1;MMAX
AM=SMPMINKSMPFCTXX(IH~1)

AL = DMIN1(9.D0,17.DO/DNSQRT(AM))
AR = ,12DO/DSORT(AM)

BSA = -DSQRT(FI/2,.DO)XAM + &,NOXDNSART(AM)
ARS = DMIN1(0.DOsRSA)

DO 2900 IPF=1,NFFA

PF=PFA(IFF)

CALL RDC(AMsFFsFDCIFD) A1)
A2=A1%1.01D0

YU=Y (IMs IFF)

CALL FNPDR(A1sVUVUsAM,AL>ADsARSsP1)
CALL FNFD(A2,VUV,AMsALsAD,ARS,P2)
IF( DARS(P1-PR(IPI)),LT.DARS(F2~-FR(IPD)) ) GO TO 2350
A0=A1

FO=P1

AN=A2

PN=F2

GO TO 2400

AO=A2

PO=P2

AN=A1

PN=F1

CALL FNIPHI(POsYO)

GO TO 2550

CALL FNPD(AN>UVsAMsAL 1 ADsARSsPN)
CALL FNIPHI(PNsYN)

IF¢ DARS(FN-PD(IPD)) .LE,1D-6%PD(IPD) ) GO TO 2750
T=(AOKCYN-YD) +ANX(YR=Y0) )/ (YN~Y0)
AD=AN

YO=YN

AN=T

GO TO 2500
SNR(IM>IFF)=10.XDLOG10(,SNOKANKAN)
CONTINUE

CONTINUE

I
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3001

3011

3021
3100
3200

4000
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RO 3200 IFF=1,NPFA

FRINT 3001

FORMAT(2(/))

FRINT 3011, FD(IFD)»PFACIPF)
FORMAT(2Xs ‘PR =’yF10.3+5Xs ‘FFA ='sD10.3)
DO 3100 IM=1yMMAX
M=SMPMINXSMFFCTXX(IM-1)

PRINT 3021y M»SNR(IMsIFF)
FORMAT(2Xy ‘M ='51I0s5Xs "SNR ="4F7.,2)
CONTINUE

CONTINUE

CONTINUE

RETURN
END

SUBRROUTINE CMPSVS

IMPLICIT DNOUBRLE FRECISION (A-Hs0-2)
FARAMETER MMAX=14

PARAMETER NUMFIL=30s PRIONUM=18
CHARACTERYXS FILES(NUMFIL)
COMMON/FILEC/FILES

CHARACTER%S FRINAM

EQUIVALENCE (PEINAMSFILES(18))
SIMENSION PFA(10),FD(10)2V(14+8)yALFHA(14,8)
DIMENSION THRS{(14,8)

DATA FPI/3.1415926535897932400/
COMMON/FDPF/NPDsNFFAsPDFFA

CALL OPNFIL(PEONUMsPRINAM)
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F1=DSART(.5D0%XFI)
F2=DSART(2.D0-,.5DOXPI)
DO 1000 IM=1,MMAX
AM=2 XK (IM-1)

AL = DMIN1(9.D0s17.DO/DNSQRT(AM))

AD = ,12DO/DNSART(AM)

RSA = —-DSART(FI/2.DR0)%XAM + &.DOXDSART(AM)
ARS = DMIN1(0.DOsRSA)

AMU=F 1 XAM

SIG=F2XDSART (AM)

ng 900 IFF=1,8

PF=10 .,k (-DFLOTJ(IFF))

IF{ AM.GT. 1.D0 ) GO TO 250
UN=DSART(-2.%XDLOG(PF))

GO0 TO 750

CALL FNIPHI(FFYF)
V1=AMU-SIGXYF+ARS

IF( IPF.GT.1 ) VI=DMAX1(V1,UN)
V2=v1+,500

IF( VI.NE.VUN ) GO TO 300

P1=PN

60O TO 325

CALL FNPF{(V1,AMsALyAD>ABS,P1)
CALL FNPF(V2,AM»AL AN ARS,P2)
IF( DARS(FP1-PF).LT.DARS(P2~-PF) ) GO TO 330
vo=v1

PO=P1

UN=V2

PN=F2

GO TO 400

Vo=y2

pPO=p2

UN=V1

PN=F1

CALL FNIFHI(POsYO)

GO TO 550

CALL FNPF(UNsAMsALYADYARS,PN)
CALL FNIPHI(PNsyYN)

IF( DARS(PN-FF).LE.1D~-92%PF ) GO TO 730
T=(VOK{YN~YF)I+UNX(YF-Y0))/ (YN-YO)
VO=VUN

YO=YN

UN=T

60 70 500

V(IMs IPF)=UN

THRS(IMy IPF)=(VN-ARS)/AM
CONTINUE

CONTINUE
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WRITE(PBDNUM) NPy (FD(I)»I=1510)
DO 4000 IFD=1,NFD

CALL FNIPHIC(FRC(IPD) YD)
N0 3000 IM=1,MMAX
AM=2 ., DOX¥ (IM~-1)
AL ODMINI(?.D0517.00/DSART(AM))
AD +12D0/DSART (AM?
BSA = ~DSART(FPI1/2.D0)%AM + 6.DOXDSART(AM)
ARS = DMIN1{(0.DOyRSA)
no 2900 IPF=1,8
PF=10.D0%X{(~DFLOTJIC(IPF))
CALL RDC(AMSPFPD(IFD)sAL)
A2=A1%1.01D0
VU=U{IM,IPF)
CALL FNFDC(AISVUVUAM,ALARYARSYP1)
CALL FNFR(A2yVU,AM ALYADRYARSYF2)
IF( DARS(PI-FPR(IPI) ) .LT.DARS(F2-PR(IFDI)) » GO TO 23%0
AO=Al
FO=P1
AN=A2
PN=P2
GO0 TO 2400
2330 A0=A2
FO=F2
AN=A1
FPN=F1
2400 CALL FNIFHI(FPO»YOQ)
G0 TO 2550
2500 CALL FNFD(ANSVVU,AMsALsARsARSPN)
2550 CALL FNIPHI(PNyYN)
IF( DARS(PN-FD{IFD)).LE.1D-6XFIN{IFD) ) GO TO 2750
T=(A0K(YN-YDI+ANX(YDR-YO))/{YN=-YO)
AO=AN
YO=YN
AN=T
GO TO0 2500
2750 ALPHAC(IMSIFF)Y=AN
2900 CONTINUE
3000 CONTINUE

HoH

WRITE(PRINUM) ((ALPHA(IM»IFF) >IPF=1,8)sIM=1,MMAX)

4000 CONTINUE

RETURN
END
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ABSTRACTY

The generalized likelihood ratio detector, for deciding between the
right-left ambiguity of a line array attempting to estimate the angle of
arrival of a plane wave, is derived. Two scenarios are considered, the
first with noisy measured antenna angle, the second with noiseless
antenna angle measurements. The detector for both cases is a cross-
correlator of the sample ac components of the measured antenna and
source angle waveforms.
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INTRODUCTION

A line array inherently has a cone of ambiguity in its response. When
the array lies in the horizontal plane, and a source is located in that same
plane, the ambiguity reduces to a right-left uncertainty, which cannot be
resolved without some manuevering on the part of the source or array. If the
line array is moving randomly, unintentionally or uncontrollably, this
movement can serve as a means of making a high quality decision about the

‘ source direction, if the array angle, as well as the source angle relative to
the line array, are measured.

TouMa -F irection

Line

Array

Figure 1. Geometry of Line Array and Source

} The situation of interest here is described in figure 1. The line array
is being towed due north; however, it is undergoing rigid bar rotation about
this direction in a random manner, as described by random process a(t), which
is the actual antenna angle relative to the towing direction.

The actual source angle, relative to the line array end-fire direction,
is s(t). Furthermore, the actual source angle, relative to the towing
direction, is e, an unknown constant; it is presumed that e is constant
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throughout tne observation interval. Reference to figure 1 reveals that these

various quantities are interrelated according to the alternatives

a{t) + s(t) for hypothesis 1, Hy

e = . (1)
a(t) - s(t) for hypothesis 2, Hy

However, it is unknown which hypothesis is correct; nevertheless, it is
desired to make a reliable decision, so that an accurate estimate of the
source direction can be made. From (1), observe that we can express

8 - a(t) for Hy

s(t) = s (2)
-6 + a(t) for H,

which will be needed in later developments.
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NOISY MEASURED ANTENNA ANGLE

In this section, the measured antenna angle is not a(t) as desired, but
rather is

x(t) = a(t) +m(t) , (3)

where m(t) is an unavoidable additive noise process. Also the measured source
angle is not s(t), but instead is

y(t) = s(t) +n(t) , (4)

where n(t) is likewise an undesirable additive perturbation, due to limited
observation time, array length, ambient noise, etc. The three random
processes a(t), m(t), n(t) are presumed to be zero-mean Gaussian processes,
independent of each other.

Combining (2)-(4), the situation is as follows: the available
measurements upon which a decision must be reached are the two waveforms

x(t) = a{t) + m(t)
for Hl , (5A)
y(t) = e - a(t) + n(t)
or
x(t) = a(t) + m(t)
for H2 . (58)
y(t) = -8 + a(t) + n(t)

On the basis of waveforms x(t) and y(t), what is the best decision and what is
the corresponding estimate of o%
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Derivation of Generalized Likelihood Ratio

Let A be the time sampling increment applied to measurement waveforms
x(t) and y(t); assume that tne samples of the three processes are
statistically independent at this rate. Denote

x(ka) for 1 < k < K,

[}

X
(6)

Y = y(ka) for 1 < k < K,
where Ka is the total observation time, and let the collections of samples be
denoted by

X = Xps Xps wees Xoo Y = Yis Yoo =ves Yo A = 15 Apy veey A . (7)
Tnen for a fixed A and a hypothesized value 8, for the source angle, the
conditional probability density function under Hy, of the total set of

measurements X, Y, is

K - a y -9 _+ a

1 K k] 1 3 h Kk
p(X,Yo,A)=” -—-¢€—v—¢ , 8
' Ih k=1{°"‘ °m ) °n ( °n ) ©)

where the normalized Gaussian probability density function is

-1/2

o(t) = (20)7L/2 exp(-t?/2) . (9)

Here we used (5A) and the Gaussian character of processes m(t) and n(t) with
standard deviations on and o, respectively.

We now must weight (8) by the Gaussian probability density function for
process a(t) and integrate over A, to determine the unconditional probability
density function of X, Y, for hypothesized value e,., C(arrying out the
integrals and simplifying the result, we obtain
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-K
py X, Yloh) = (Zwaaamon :];,2 *
R R
an 2 am 2 1
*expf- 22’%““""‘2R 22(%‘%) —77 2% o) (10)
3m 3%n 3m’n K
where we define
1 1 1 1 1 1 1
R.m = + s R.. = + , Ry = + + (11)

_S_=§K . (12)

k k=l

In a similar fashion, the unconditional probability density function of X, Y
under H,  for hypothesized value e,, is given by

-X
1/2
2(X, Yleh)“(z"amn 3) *

* exp |- ———szk '—2' é(yk"eh)z x (ytop) ] (13)
2R3 Ryopen

Now if @ were known, we could evaluate the likelihood ratio by taking
the ratio of (10) and (13). However, we must resort instead to a generalized

likelihood ratio, by computing the two values of e, that maximize (10) and
(13) respectively, and then taking the ratio of the two maxima [1, p. 92].
This procedure is not optimum in any sense; however, it often leads to
physical processors that perform weil.

The values of @, that maximize (10) and (13) are given respectively by
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o1 °a 1
o, = E%yk i R.kak for Hy , (148)
g Om

1
d

These results have a reasonable physical interpretation: From (5A), the sum
x(t) + y(t) would eliminate the random process a(t), and the sample mean of
the sum would give an estimate of e under Hi. However, m(t) contaminates

the a(t) contribution according to (3); thus the scale factor agl(ai + o%) in

(14A) indicates how trustworthy the sample mean of x(t) is. The noise n(t) in
y(t) is unavoidable but is partially suppressed by the inherent averaging of
the sample mean of y(t). A similar argument holds for x(t) - y(t) under Ho.

The logarithm of the generalized likelihood ratio is (proportional to)

gx Ye%
1 2 2 ¢ Pal* 12

2 2 .1
= =7 Ram m %(yk * °2) *7 ?xk(yk tey) ¢

1

* 7 Ram °§. ?(-Vk - ‘=‘1)2 + vggxk(yk - 8;) (15)

where we used (10) and (13) with 8; and e, substituted for e,. Now let
S, = éxk, Sy =k2yk , Pa= %xkyk . (16)

Then (15) becomes, upon use of (14) and simplification and cancellation of
various terms,
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1
T=P - X SXS_Y =
1
=kzxk'yk - ’KZX‘. E..Yn = (17A)
= 3 XY o (178)

where

_ 1
_yk..yk--li-g_yn for 1 <k <K, (18)

are defined as the sample ac components of measurements X and Y; that is, the
sample means are subtracted from the measurements.

The generalized likelihood ratio test in (17) says to cross-correlate the
sample ac components of both measured waveforms and to compare with zero
(assuming H; and H, are equally likely apriori). That is, the test is

K H
~~
kel H

Observe that this decision rule makes no use of the variances of any of the
processes a(t), m(t), n(t), although this information was presumed known in
the above derivation. Of course, the source angle estimates in (14) do

require knowledge of the signal-to-noise ratio oglai in the x(t) measurement

of the antenna angle a(t). Once the decision of Hy vs H, is made via (19),
the corresponding estimate of the actual source angle o is taken from (14).
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On the Performance of Test (19)

From (5) and (6), we find that

2
-9, for Hl
xkyk = ) ’
% for Hz
X Y, = 0 formén . (20)

Then (17A) yields the mean value of the generalized likelihood ratio test
statistic as

2
-(K-1) o, for H

T= . (21)
(K~1) o§ for H,

Since the statistics of T are desired different under the two hypotheses,
(21) indicates that large K and 0% are desired. That is, a large
observation time and a widely-moving antenna give better performance of the

test; both of these conclusions are physically plausible,

Although generalized likelihood ratio test (19) does not require
knowledge of any variances, the performance (in terms of the error
probability) does depend on all the variances. However, the performance does
not depend on the actual value e of the source angle. To see this, we employ
(5) in (18) to obtain

-4+ 0 - (=5, * S,)/K for H

‘yk - L (22)
a +n - ( S, * Spy) /K for Hy

where
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S, =;ak, Sy =20 - (23)

k

Thus o is absent from (22), and since @ is not involved in x(t) or x ., test
statistic T is independent of e.

If we develop (19) in more detail and make use of (18) and (5), we find
we can express

T = --%(ak + mk)(ak -0 %(- % + mk)gﬁk— nkﬂ for Hl s

T, = :g(ak +m)(a +n) -%(- + mk)g(ik+ "k] for Hy, . (24)

Tnus the statistics of Tl are identical to those of —Tz.

Based upon the results in [2,3], an exact analysis of the cumulative and
exceedance distribution functions of test statistic (17A) is possible and will
be documented in a NUSC technical report shortly; in fact, a more general
processor, where the sample means term is scaled prior to subtraction, will be
analyzed.
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NOISELESS MEASURED ANTENNA ANGLE

In this section, the noise m{t) in the antenna angle measurement is zero;
thus, from (3),

x(t) = a(t) (25)

under H; and H,. We also remove the Gaussian assumption on the statistics
of antenna movement a(t), and allow a{t) to be completely general.
Furthermore, we allow any statistical dependence among the samples A of a(t)
in (7). However, we retain the Gaussian assumption on the additive noise
process n(t) in (4) and (5), and keep the statistical independence of its
samples {n(ka)} K,

Derivation of Generalized Likelihood Ratio

Based upon thesz premises, the conditional probability density function
under H; of measurements X, Y, for a fixed A and hypothesized 8, 15

K y, - ©_ +a
p (X, Y]op, A) = TT {s(xk - a,) %;é ( Kk ")} : (26)

k=1 n

(This is also the limit of (8) as o,~»0+.) Then letting joint probability
density function p,(A) represent the arbitrary statistical dependence of
samples A, the unconditional probability density function under Hy of X, Y is

PL(X, Y]o) = [¢A p,(A) py(x, Y]op, A) =

- W7o expE-z-%%_(yk -8, * xk)z] Pa(X) , (27)
%

using (26), (9), and the sifting property of delta functions. (If measurement
noise m(t) in (3) were non-zero, this simplification of the probability
density function in (27) would not be possible.)

10
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The value of o, that maximizes probability density function (27),
regardless of the form of the probability density function Pas 15

° = Tlfé("k METUE (28)

which is simply the sample mean of the sum waveform x(t) + y(t). This result
is consistent with the earlier one in (14A), for oy = 0, and the ensuing

discussion.

In a similar fashion, the probability density function of X, Y under H,

is
po(X Y|op) = 4Z o) exp[— wd XORC x,f] p,(X) (29)
o
n
and the maximizing choice of o, is
o = S(x - ) (30)
2= Ko - %)

which is the sample mean of difference waveform x(t) - y(t).

There follows, from (27)-(30), the logarithm of the generalized
1ikelihood ratio as

Py (X, Yo,)

2 2 2
20n,Qn W = —g(yk + Qz - X") +g(yk - 9, + Xk) . (31)

The generalized likelihood ratio test for the two hypotheses in (1) is
therefore

11
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H
kﬁ(xk * Yy - 91)2 22 %(xk - Y - 92)2 , (32)
Hy

or upon substitution of (28) and (30), and use of (18), simply

DR
XYy 2 o . (33)
K Hy

As in the previous section, the cross-correlation of the sample ac components
of the measurements X, Y should be compared with zero. This decision rule
holds for any statistics of antenna movement a(t).

The alternative form in (32) has an interesting interpretation:
Reference to (27)-(28) reveals that e is the best constant fit to
{fk + yg}ﬁ in a least squares sense. Thus the left side of (32) is
the actual value of the least squares error of a constant fit to the sum
waveform. Similarly, the right side of (32) is the least squares error of a
constant fit to the difference waveform. Whichever error is smaller, that
hypothesis is selected. This decision rule, (32), is consistent with the
observation from (5) and (25) that

x(t) + y(t)

e + n(t) under Hy

x(t) - y(t)

e - n(t) under H2 . (34)

That is, except for zero-mean measurement noise n{(t), the sum waveform is
constant under H,, whereas the difference waveform is constant under H,.

An alternative form for (32) and (33) is

12
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H
S 30 B0,
K ] n Hl

just as in (17A). A1l the ensuing discussion there through (24) is directly
relevant for this case as well.

13
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SUMMARY

The generalized likelihood ratio test statistic, for both the noisy as
well as the noiseless antenna angle measurement, is a cross-correlator of the
sample-ac components of the measured antenna and source angle waveforms.
Exact performance of this processor can be accomplished, since the test
statistic is a quadratic form of correlated Gaussian random variables; in
fact, the complete cumulative and exceedance distribution functions of the
quantity

K K K
Z xk'yk "% 2 xm E yn ’ (36)
M=

for any scaling y, is capable of exact analysis and will be presented in a
future NUSC technical report.

REFERENCES

1. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I,
J. Wiley and Sons, Inc., N.Y., 1968.

2. A, H. Nuttall, "Accurate Efficient Evaluation of Cumulative or Exceedance
Probability Distributions Directly from Characteristic Functions", NUSC
Technical Report 7023, 1 October 1983.

3. A, H. Nuttall, "Exact Performance of General Second-QOrder Processors for
Gaussian Inputs®, NUSC Technical Report 7035, 15 QOctober 1983.

14




Technical Report 7045
14 August 1984

Operating
Characteristics of
Crosscorrelator
With or Without

Sample Mean Removal

A. H. Nuttall
ABSTRACT

The characteristic function of the output of a crosscorrelator, with
the sample means removed from each channel, is derived in closed
form. More generally, if scaled versions of the sample means are sub-
tracted prior to multiplication of the channel inputs and summation, a
closed form for the characteristic function of the correlator output is
derived. These results are used to plot the exact operating characteris-
tics of the crosscorrelator, as functions of the threshold, the general
scaling factors applied to the sample means, the number of terms, N,
summed to yield the output, the actual means at the inputs, and the
signal-to-noise ratios of the ranc >m signal components at each of the
system inputs., Programs for the various cases considered are
documented and exercised. Comparisons are made with a Gaussian
approximation, which can be used to extend the results to larger values
of N than considered here, if needed. Asymptotic results for the
exceedance distribution functions also have been derived, but they are
not too useful for large N.

Approved for public release; distribution unlimited.




TR 7045

TABLE OF CONTENTS

PAGE
LIST OF ILLUSTRATIONS .ivivrinannns A B B
LIST OF SYMBOLS sucvceneeeocensessaacacnnsosoansanns 2 B
INTRODUCTION tvuvesennsecsasncnsnsescssansoscacsoscscscsassssssnonsns R |
PROBLEM DEFINITION ..vvvrverencnnene cesesesasens Cecesesecentrsacscanannns 3
Input Statistics tiievenceeereacerenssnersecesarsoccactanssasacaens vae 3
A Signal and Noise Model .....cvveevccncnnnnns ceeens cettasesacsnanns 3
Crosscorrelator OQutput ...ccvevecrcenanncas .
CHARACTERISTIC FUNCTION OF CROSSCORRELATOR OUTPUT ...... cecrsesescacanas
Derivation ...ciieeeeareesscrccesccccsonses teresasessassecsnannesans 7
Cumulants of Correlator Output .......... ceneea cesessesevescnssessss 10
Special Case of y=1, Sample Mean Removal ...... cecssesssvescecnseses 10
Special Case of y=0, Sample Mean Not Removed ......ccvvveeveevneneene 11
Interrelationship of Two Special Cases .......... cesrsieacas cesvasee 12
Specialization to the Signal and Noise Model .......civevevenneacnns 12
ANALYTIC RESULTS FOR y=1, SAMPLE MEAN REMOVAL ...viiieeeinnccoceancannann 15
General Probability Results ...ccovvene cverees sesetessececesenocnens 15

Possible Normalization of G ceeeverenceoacnctercerscoones sonsoncnees 17
Specialization to the Signal and Noise Model .....eevevrnncccvensees 18

Reduction to Identical Signal Components ............ tetecereneaeens 19
General Distribution Integrals .....ceeveeveecsrcancssconccancaneaes 22
Distributions for N=2 ..c.cevieetrecccecancacesccssncsnsnss cessesana 22
Distributions for N=3 ....citieeiercocressrsrovsassssscscassonncnas . 24
Distributions for N=4 ........ Ceececseaescaciassrestsasatnrarannnaan 24
Distributions for N=5 ....ccvenevnens cesensesessanas ceseescesssssans 25
GRAPHICAL RESULTS FOR y=1, SAMPLE MEAN REMOVAL ..civeevnnnnnnccansncaness 27
Summary of Particular Case Considered ....... cecaans seesssessessnnsee 27
Operating Characteristics for y=1 ...cvveecennen cesesesan teessesvess 28
Gaussian Approximation ...ecesecececcscsccossasscsssccssssavansances 29
ANALYTIC RESULTS FOR =0, SAMPLE MEAN NOT REMOVED .....i.cvveveencnvoncaas 33
Specialization to the Signal and Noise Model ......ciiieieninnnas eee 33

Normalized Crosscorrelator OUEPUL ...iveececrevensscccevossnsaanans 34
Reduction to Identical Signal Components .....cevecveccncoscnsnseasees 35




TR 7045

TABLE OF CONTENTS (Cont'd)

PAGE
Asymptotic Behavior of Cumulative and Exceedance Distribution
Functions ...veevevnneens testecessassesencannasncns cesiectrarannns 37
Distributions for Nal ... .ieuiiiienensrecnsaesnceeanasns R £
Distributions for N=2 .....voceeeeennnnnes Geserseanranrsesresosatns . 38
Distributions for N=d .....ecceinuiirnearcenrsnecsncoocrsnssannsanees 40
GRAPHICAL RESULTS FOR y=0, SAMPLE MEAN NOT REMOVED ...vevvvenecnnvnnanees 45
Summary of Particular Case Considered .....cvevvivncennececnnnonnens 45
Operating Characteristics for v=0 ...cvvvievnrnncennnns cesesnseanans 45
Gaussian Approximation ........ ceesesas Cteecesssesaasesesrsenrnenees 46
SUMMARY 4 iuuivnnsncosoosecsnsncessssesesancanceannancnnes cesvenas creesnne 49
APPENDICES
A.  CORRELATOR OQUTPUT INDEPENDENCE OF MEANS ......... Ceseeseseecneassacs A-1
B. A USEFUL INTEGRAL OF EXPONENTIALS OF MATRIX FORMS ..... Cevesersecias B-1
C. PROGRAM FOR CUMULATIVE AND EXCEEDANCE DISTRIBUTION FUNCTIONS
VIA CHARACTERISTIC FUNCTION (23)-(24) cuvveeeecnnconocnonesnannnes C-1
D. PROGRAM FOR EVALUATION OF OPERATING CHARACTERISTICS FOR y=1 ........ 0-1
E. ASYMPTOTIC EXPANSIONS FOR DISTRIBUTIONS WHEN r>0 ..cvieeevcencnanass E-1
F.  EXCEEDANCE DISTRIBUTION FUNCTION FOR vy=0, N=1, r>0 ..coiiiuiennncnnns F-1
G.  PROGRAM FOR EVALUATION OF OPERATING CHARACTERISTICS FOR y=0 ........ G-1
REFERENCES tivevveveccscnesccancnan Cesesessasasessnseasassesnanas creseana R-1

i1




TR 7045

LIST OF ILLUSTRATIONS

F IGURE PAGE
1. Operating Characteristics for Crosscorrelator with Sample Mean
Removal, N=2 .uieiieesereecnneeasoerssnoscsnsnasnnnanes 1 |
2. Operating Characteristics for Crosscorrelator with Sample Mean
ReMOVATl, N=3 ..veurecereecanccacsanonnoosasssansoanscassonsaaenss 52
3. Operating Characteristics for Crosscorrelator with Sample Mean
Removal, N=4 ...cccveeeeees Gsssstacrsrasssscsessssrveseresassenas 53
4. Operating Characteristics for Crosscorrelator with Sample Mean
Removal, N=b ..vieverrrenonnancrncnccnnnes cessessessesescannna oo 54
5. Operating Characteristics for Crosscorrelator with Sample Mean
Removal, N=8 .ceevvecsvecssnancans U 1
6. Operating Characteristics for Crosscorrelator with Sample Mean
Removal, N=12 ...cvveeenccecess reeeana - 1
7. Operating Characteristics for Crosscorrelator with Sample Mean
Removal, N=16 ...... Seessesesessserssatessscanessseesscascrscnsae D7
8. Operating Characteristics for Crosscorrelator with Sample Mean
Removal, N=24 ....ccevinrecrsnsennsocssnancnccnns cesseseeacsssses 98
9. Operating Characteristics for Crosscorrelator with Sample Mean
Removal, N=32 tcivieiieercececnnoscososonosavcencanscsnssssanasnee 99
10. Operating Characteristics for Crosscorrelator with Sample Mean
Removal, N=848 ...ciievirecretcannnsecsacans cessessasensesansasess B0
11. Operating Characteristics for Crosscorrelator with Sample Mean
Removal, N=B4 ...cuiiiiecececensnascsessocnsssessasaascscssssaasna Bl
12. Operating Characteristics for Crosscorrelator with Sample Mean
Removal, N=96 .......c000n P  Y'4
13. Operating Characteristics for Crosscorrelator with Sample Mean
Removal, N=128 ....vvaeneneccecncsonnssessanssassscearcansssacsess 63
14. Operating Characteristics for Crosscorrelator with Sample Mean
REMOVAT, N2256 +eveeeeeeenecensesnseesnesessassncsanersssasaneens 64
15. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=1, r=1 .i.iiieevieccenneannaccenn O . 1.
16. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=l, =2 ..iiitiiiececencecsoscsccsccasaasascsassssannas 0O
itd



TR 7045

LIST OF ILLUSTRATIONS (Cont'd)

FIGURE
17. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=2, r=]l cceceernvecnceessenrvoneonnns cecnan resesevncnes
18. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=2, r=2 ...cieeeecosessnccconccccannas teeessncnncserans
19. Operating Characteristics for Crosscorrelator without Sample Mean
RemOVAT, N=2, =8 .i.ivteeecervnennsorscosncssssasasesnsssassacsnass
20. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=3, =l ..iiieeeececessasosenccesnoossonsoeonceassoonnnsns
21. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=3, r=2 cceeececcccsncnssanccas et tecrassentrsrecsananne
22. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=8, =l ..ceeeeeccecosonscoosotcssscanssnesccssacna cene
23. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=d, r=2 ...eeececcesersscccesaracssscncccassosneosssens
24. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=8, r=] ...cceeeececcossccocecasenvsansscescoavsoancecsssn
25. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=8, r=2 ...ccecevvesne sseessesaseatessttesrtennetensons
26. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=16, r=l ...ccicecenenvocccssarncccnsncnan ceesssstanane
27. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=16, r=2 .ccceeecerecenrccrssvsnorcncnnsnance teseessresens
28. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=32, r=l .ceviceencecscesecnsccarsernsccsscvencsacensans
29. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=32, r=2 .ceeeceecevescerssossscosonanncsscnscanns cesane
30. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=64, r=1 ...cicicevecccncenccnocsans Ceeessereescaneanns
31. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=bBd, rs2 ...veecesesacasscesssssccssscsssnsccassnssanss
32. Operating Characteristics for Crosscorrelator without Sample Mean

iv

Remova], N=128, Y'al R R R R N N R S I I N A I S AP SR RN 3 WA S )

PAGE

67

68

69

70

71

72

73

74

75

76

77

78

79

81

82




TR 7045

LIST OF ILLUSTRATIONS (Cont‘d)

FIGURE PAGE
33. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=128, r=2 ....... P - X
34. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=256, =1 ..ciciiceeeccccccccns tesessecnesssesescccscss B4
35. Operating Characteristics for Crosscorrelator without Sample Mean
Removal, N=256, =2 c.ceeeecsscencconcocsssosocassonnsescons ceess 85

C-1. Cumulative and Exceedance Distribution Functions ...eeeecececoscses C-4
E-1. Contours of Integration for Cumulative Distribution Function ...... E-2
E-2. Contours of Integration for Exceedance Distributicn Function ...... E-3
F-1. Equivalent Contours for (F=1) .iceeceeccsnanccosnnnccsssanessncasee F=1
F-2. Equivalent Contours for (F-9) .......ccveee.. teresescersactsssassess F-4
F-3. Regions of Integration ...ccceeesscesssscscassessocsnssssseacssseas F-10

vivi
Reverse Blank




N

Uns Vn

overbar
“u,uv

%us 9y

o]

ug(n), vg(n)
ug(n), vy(n)

Sy» S

Pg

v

u’
u’

Pglu)

fqlf)
det

E)sEpF15F2i6y46y

Xqln)
"q* %
1,(z)
Ky(2)
Palu)
l-Pq(u)
h

R

TR 7045
LIST OF SYMBOLS

Number of terms summed to yield crosscorrelator output
Two channel inputs at sample time n

Statistical average

Means in two input channels

Standard deviations in two input channels
Correlation coefficient between two input channels
Random signal components at inputs

Random noise disturbances at inputs

Powers of random signal components

Correlation coefficient between signal components
Powers of random noise disturbances

Signal-to-noise ratios of random components of two input
channels, (8)

Sample ac components of inputs

Crosscorrelator output, (12)

Scale factors applied to sample means

Scale factor utilized in crosscorrelator output, (12)
Column matrices of two channel inputs

NxN matrix, (16)

Column matrix of ones, (17)

Probability density function of random variable q and
argument u

Characteristic function of random variable q and argument ¥
Determinant
Parameters of characteristic function, (24)

n-th cumulant of random variable q

Mean and standard deviation of g
Modified Bessel function of first kind
Modified Bessel function of second kind
Cumulative distribution function of q

Exceedance distribution function of q
Normalized crosscorrelator output, (49), (94)

Signal-to-noise ratio for identical signal components,
(56A), (78)

vii



TR 7045

Q(a,b)
QM(aob)

ay(u),ay(u)

viii

LIST OF SYMBOLS (Cont'd)

Contours for determining cumulative and exceedance
distribution functions, (63), (64)

False alarm and detection probabilities

Normalized Gaussian probability density function, (84)

Normalized Gaussian cumulative distribution function, (84)

Inverse § function

Mean and standard deviation under hypothesis k, (86), (128)

Normalized means in two channels, (97)

Common normalized mean, (99), (124)

Auxiliary variable equal to 1+2R, (102)

Unit step function, (109)

Q-function of Marcum

QM-function, ref. 8
Auxiliary functions, {115)




TR 7045

OPERATING CHARACTERISTICS OF CROSSCORRELATOR
WITH OR WITHOUT SAMPLE MEAN REMOVAL

INTRODUCT ION

The detection of weak signals in two channels is often accomplished by
crosscorrelating the two waveforms and comparing with a threshold. For the
case where a large number of independent products are added to yield the
correlator output, the central limit theorem is often employed, with
questionable validity for low false alarm probabilities, i.e. large thresholds.
Also, this approximation may not be valid for intermediate numbers of terms
added.

Here we wish to get exact operating characteristics for the
crosscorrelator, namely detection probability vs. false alarm probability,
even for probabilities as low as 1E-10. In particular, we desire results for
an arbitrary number of products summed, for any degree of correlation between
corresponding individual samples of the two channel inputs, and for any input
signal and noise power levels.

Furthermore, it sometimes happens that the two input channels contain dc
components, which can be considered either desirable or otherwise, depending
on the application. Here we will consider these dc components as nuisance
terms and will subtract them out prior to crosscorrelation. More precisely,
since the actual values of the dc components in each channel will generally be
unknown, we will estimate them via the sample means (over the available record
lengths) and subtract these estimates from the available data. This
subtraction feature creates new random variables, all of which are
statistically dependent on each other, and thereby significantly complicates
the analysis. Nevertheless, this crosscorrelation of the sample ac components
of the input channels is encountered in practical situations, and in one recent
study [1], it was in fact the generalized 1ikelihood ratio detector under two
different realistic scenarios. Accordingly, it merits study and accurate
guantitative evaluation of performance capability.
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More generally, we consider subtraction of scaled versions of the sample
means of each channel prior to multiplication and summation. Then as special
cases, we can investigate the crosscorrelator with or without sample mean
removal, or any intermediate case of interest.

The major analytical result here is a closed form for the characteristic
function of the correlator output, in the most compact form involving only two
rooting operations and one exponential. Although this processor could be
analyzed by the general method given in [2], in terms of the eigenvalues and
eigenvectors of a correlation matrix, it would be less accurate and
considerably more time consuming, even with computer aid, especially for a
large number of terms summed. The actual numerical procedure adopted here for
proceeding from the characteristic function to the exceedance distribution
functions (false alarm and detection probabilities) is that given in [3], and
utilized to advantage in [2,3,4].
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PROBLEM DEFINITION
INPUT STATISTICS
The two channel inputs to the crosscorrelator are synchronously sampled
in time, yielding random variables {hé}? and {Vn ¥, where N is

the total number of data samples taken in each channel. These random
variables are Gaussian with the following statistics:

means Up = gs Vo = iy,
—_— o, T all
variances (unJG;) = 05, (vn-vn)2 = os, independent (1)
of n.

covariances (un—un)(vn—vn) = 00,0,

(An overbar denotes a statistical average.) That is, the means and variances
in each channel, although different, do not change with time, and the degree
of correlation between channels is constant. Also

Un is statistically independent of up if mén,
Vp is statistically independent of v, if mén, (2)
U, is statistically independent of v, if mén,

' However, u, and v, are statistically dependent on each other, for all n,
to the extent p indicated in (1).

A SIGNAL AND NOISE MODEL

To better fix the mathematical definitions above, consider in this
subsection the following possible signal and noise model:

Up = uy * ug(n) + ug(n)
for 1 < n < N, (3)

Vn = uy * vg(n) * v4(n)
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where random signal components u (n), vs(n) are zero-mean and partially
correlated with each other:

Uszﬂs = 0, vslni = 0,
for all n. (4)

wZ(n) =5, v2(n) = S, TTRTVCTAT = og(s,s,)0/2

Thus S, Sy are the powers of the random signal components in each channel.

Also, the random noise disturbances uy(n), vq{n) in (3) are zero-mean
and independent of each other:

for all n. (5)

ug(n) = Du’ vz(n) = Dv’ udlni vdlni =0

Thus Du, Dv are the powers of the random noise disturbances in each
channel. Finally, except for the statistical dependencies indicated in (4)

between u,(n) and vg(n), all the 4N random components in (3) are
independent of each other.

For this particular signal and noise model in (3)-(5), the master
parameters in (1) take the special form

2 2 2
oy = Sy*Dys oy = 5,*Dys 000, = °s(susv)1/ » (6)
from which~there follows
Ru Rv 1/2
o = ol TR,/ (7)
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where the signal-tc-noise ratios (per sample) of the random components in (3)
have been defined as

2 2
S u-(n) S ve(n)
R - EH -3 . R, =.5! =2 for all n. (8)
u u 2 v 2

Thus the parameters Oys Tys o in (1) depend only on the statistics of the
random components in model (3), and not on the dc components My and u,,.

Observe that even if Ps=1 and R =e0, p would still be less than 1; the one
noisy channel prevents full correlation between inputs.

CROSSCORRELATOR OUTPUT

We define the sample ac components of each channel of the crosscorrelator
as

(=

(]

(=

|
2

for 1 < n <N, (9)

<
S<

"

<

=

(
2
M =
<

3

where we have subtracted the corresponding sample means from each and every
data sample. Thus {ﬁ;}? and {V;}? have zero-means and have statistics
completely independent of the unknown actual values of input means Mys Hye
However, in trade, we now must deal with a new set of 2N random variables, all
of which are statistically dependent on each other; this is the feature which
complicates the ensuing analysis. The test statistic (decision variable) of
interest is the crosscorrelator output after sample mean removal,

N N N N
§~~ 1
q = unvn=§unvn--ﬁ2 “mz Vo s (10)
m=1 N=1

n=1 n=1
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which is indenendent of the actual unknown values of input means u, and By
If we knew the input means, we cou:d subtract them directly and not have to

resort to sample means.

More generally, we consider the modified channel components

N
AP
N

M=

for 1 <n<N (11)
N
v 8
Vn=Vn—~N' Vm
m=1
and the crosscorrelator output
N N N N
uv X
DD kS WSy G
n=1 n=1 m=1 N=al

instead of (9) and (10). Scale factors « and/or g in (11) may pe unequal to 1;
the final parameter y in (12) is given by

y=a+*+8-ad =1- (a-1)(8-1). (13)

The case of y=0 in (12) obviously corresponds to the case of no sample mean
removal. On the other hand, if either* a=1 or g=1, then y=1, and we have
removal of the sample mean; i.e., (12) reduces to (10). We shall be interested
here in the analysis of the general case represented by (12), for arbitrary y.

* It is demonstrated in appendix A that if scale factor a=1 but g#l,
correlator output q is completely irdependent of Mys My Be
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CHARACTERISTIC FUNCTION OF CROSSCORRELATOR OQUTPUT
DERIVATION

We express the collection of random variables in (1) and (2) in column
matrix form according to

T T
U= [u1 Uy oo uN] y V= [v1 g oo vN] , (14)

where superscript T denotes transpose. The crosscorrelator output q in (12)
can then be written as quadratic form

=uTqv, (15)
where: NxN matrix
Q=1-3117, (16)
I is the NxN identity matrix, and

is a Nx1 column matrix of ones.

Since U and V are Gaussian, their joint probability density function is,
in terms of the parameters in (1),

1/2
p(U,V) = Ena o 6. p) ,] [ 2(1 , *
-p

(U - w7V - uvlﬂ.(m)

*\{EE(U - uul)T(U - u,l) ¢+ ig(v - uvl)T(V - u,1) - 02:

uv

The characteristic function of correlator output q in (15) is then given by
the statistical average
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Fo(8) = SXPTTFA) - exp(iBUTQV) -

= j}~du dv p(U,V) exp(i§UTQV) =

-N
1/2
2 oy T 1
= [ZWC}UUV (1"9) ] JJ-dU dv EXDEFU QV - m *

*{ié»(u RS DLICTIR DR TGN DL (I D Q- TR DRI (i "vl}]-“g’

[s s |
" o, uv
At this point, in order to evaluate this 2N-fold integral, we employ the
general integral result (B-2) and (B-6) in appendix B, identifying the
matrices there as

A= b Byl C= R0 —E o,
a,(1-0%) a,(1-0%) a0 (1-p%)
uv
g.u. — po U agau — po u
D = ; u 2“ Y1, E=-4 ; 2“ 4. (20)
auav(l—p ) ouov(l—p )

We also need the following auxiliary results for special matrix forms; namely,
for arbitrary scalars c;, c,, the matrix determinant

1

det(cll + <, 1 lT) = c?‘ (c1 + ch), (21)

and the matrix inverse

-1 c
(eI +¢,1 1)y Ll . 2 117, (22)

Cy cl(c1 + ch)

Employment of appendix B and (20)-(22) then yields, after a very considerable
amount of effort, a closed form for the characteristic function in (19) (in
its most compact form)
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G1 + 1562

exp i
Ay igF, + §°F,
fq(Y) = N-T » (23)

L2 1
é- iBE, +;252> 1 - ifF, + §%,)2

where

g.,» E 2 2(1—92) s

Ey = 2000, 2 = %%

Fyo= (1), Fp = E,(1-n)?,
2 2
vMu ). (24)

6y = N(1-v)u u,> Gy = %N(I—T)Z(OSus * o u, ~ 2000

vHiuby
The square roots in (23) are principal value, being +1 at ¥=0. This
characteristic function has four branch points and two essential singularities
which overlap two of the branch points; the complexity of this characteristic
function of g precludes tractable analytical resuits for the probability
density function or exceedance distribution function of the correlator output,
except in very special cases. Nevertheless, since the characteristic function
in (23) is easily numerically evaluated with computer aid, it readily lends
itself to the procedure presented in [2,3]. A program for the evaluation of
the cumulative and exceedance distribution functions corresponding to
characteristic function (23)-(24) is given in appendix C for arbitrary values
of

N, number of terms summed

v, scale factor in sample mean removal
u,, Mean in u-channel

u,, mean in v-channel

o,» standard deviation in u-channel

o, standard deviation in v-channel
p, correlation coefficient between channels.




TR 7045

A sample plot of the cumulative and exceedance distribution functions for a
typical selection of numerical values for the above parameters is also
presented in appendix C.

CUMULANTS OF CORRELATOR OUTPUT
By taking the natural logarithm of the characteristic function in (23)

-and expanding in a power series in ¥, the cumulants of random variable gq can
be extracted:

Lyn) = F0-1):N-1%(1-0)"] (o,0,)"(s" + O")
+ 3IN(1-)"(o,0,)" wu, (s"T 0™ 4
)

+ 0N oo, ) AeluZ + A2y (" 0™y (25)

where here
S=p0+1, D=p-1. (26)

Ir. particular, the mean and variance of q are available by using n=1 and 2
respectively in (25):

ug = (N-v)ooyoy + N(1-v)uyuy,
Og = (N-27+72)(1*02)6§05 + N(I-Y)z(aﬁus + °3"5 * 2p0,0,u 1, ). | (27)
SPECIAL CASE OF y=1, SAMPLE MEAN REMOVAL
For y=1, the general characteristic function in (23) reduces to
N-1

-7
fo(fs v=1) = (1-1251 + g2 Ez) . (28)

10

- —— e e A
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where E; and E, are still given by (24), and are independent of means u,
and Hys S shown earlier. The cumulants in (25) reduce to

Xq(n) = 3(n-1)1(N-1) (0,5, (0#1)" + (0-1)"] , (29)
and in particular, the mean and variance of q are
ug = (N-l)oouov.
op = (N-1) (1+6%)0202 . (30)

SPECIAL CASE OF y=0, SAMPLE MEAN NOT REMOVEC

For y=0, the characteristic function in (23) reduces to

(0) 4 seplo0)
f_(§;v=0) = (1 - %€, +3252)_N/2 exp [i§ e U 1SG§ A (31)
9 1-iBE, + ¥°E,
where
22
G§0) = Nuyuyo GéO) = %N(°S“3 * oy, = 2o o ). (32)

The cumulants are obtained by setting y=0 in (25), and in particular, the mean
and variance of correlator output q are

uq = N(DGUOV + uu“v)!

2 2, 2 22 22
cq = ngl*o )ouus + o, by taou, * 2pauovuuué]. (33)

11
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INTERRELATIONSHIP OF TWO SPECIAL CASES

Let the general characteristic function in (23) be denoted by
quE; N, v, > u,). We have already seen the expression for
quF; No 1, uys u,) in (28). At the same time, from (23) and (24), there
follows

N-1
» -7
f (¢8; N-1, 0, 0, O0,) = <é - iFE, +¥°E R (34)
q 1 2
which is identical to (28). That is,
fq®s N 1o wps ) = f(F; -1, 0, 0, 0). (35)

Thus the characteristic functions of the two following random variables are
identical:

(1) Sum of N terms with sample mean removal, and the true means
arbitrary,

(2) Sum of N-1 terms without sample mean removal, but the true means
zero. (36)

The removal of the sample means has eliminated the dependence of the correlator
output on the unknown means but has reduced the number of degrees of freedom by 1.

SPECIALIZATION TO THE SIGNAL AND NOISE MODEL
For general scaling factor y and arbitrary input means u , u,, and for
the model introduced earlier in (3)~(6), the general characteristic function of

the correlator output is still given by (23), but with the parameters in (24)
now specialized to the form

12
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1/2 2
E) = 204(5,S,)7""s  E5 = DD, *D,S,*DS,*S S, (1-05),

2
FI = El(l“T)s Fz = Ez(l-Y) ’
6, = N(1-y) 6, = N(1—y)2[(S +D, Ju+(S,+D, Ju-20 (S S.) ] (37)
1 Yuguys Gy = SN(1-y u CulBy Wy Py gm0y iy .
The general n-th cumulant is still given by (25); however, the use of (6)
allows for determination in terms of the fundamental quantities of the signal

and noise model, namely Su» Sys Dys Dy» g defined in (4}-(5). In
particular, the mean and variance of correlator output q are

1/2

1/2

ug = (N-v)o (S,S,) * N(L-v)u,u,,

2 2 2
oq = (N-2yty )[DuDv‘*DuSv*DvSu*(l*ps)SuSv]+

+ N(1-p)20(5,*D, g+ (5,0,

v v u+2°s(susv)1,2”u” 3. (38)

13/14
Reverse Blank
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ANALYTIC RESULTS FOR y=1, SAMPLE MEAN REMOVAL
In this section and the next, we will confine attention solely to the

case of scale factor y=1. The characteristic function of the crosscorrelator
output q follows from (28) and (24) as

N-1 N1
-2
Fo(8) = (1 15E, +8%6,] = [1 - i82ooy0, + Flolol(1-00)] =
Nl
= {[l*ifouav(l—p)] [l-i}auov(l+p)j 'z for y=1 , (39)

where we must have N>2. We observe, for later numerical use in appendix D,
that since ll t ifb! = (1 ,:;2b2)1/2 is monotonically increasing for §>0,
then [fq(;)\ is monotonically decreasing for all ¥>0 and any N, o, Oys 0o

GENERAL PROBABILITY RESULTS

The cumulants of q have already been listed in (29) and (30). The
probability density function corresponding to characteristic function (39) is
given by [5, 6.699 12]

Plt) = [(N"l) 20 21/2uJ (21u|>’z-1

* K (;——biL——E—-exp '-—_jﬁL_TT- for all u, y=1, (40)
N
-1

auov(l—p ) cuov(l-o )

where K (z) is a modified Bessel function of the second kind [6, section 9.6].
If the number of terms added, N, to yield correlator output q, is odd, simple

relations for the probability density function in (40) can be obtained
[6, 10.2.15 and 10.1.9, last equation]; letting n = E%Q for N odd, we find the

exact result

15
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2\n
pq(u) = ‘1"0 2 exp pu -l \

|
T m
20uav 4" n! °u°v(1'°2L/|n=0 n-m)! m. auov(l—ozy
. N-3
for all us n =T N = 3, 5, 7, sse s (41)

For example, for N=3, we have n=0, yielding

Dq(u) = ﬁv-exp (—"u—_—l%— for all u. (42)

ouav(1~o )

The corresponding cumulative distribution function for N=3 is

u
1- u
Pq(u) =_;(°- dt pq(t) = 2° exp(’u"v(l"p)) for u<O, (43A)

while the exceedance distribution function is

4o

1+o - U
1- Pq(u) = ‘(dt pq(t) = expC’u°v(1+°)) for u>0. (438)
u

This dichotomy, of presenting the cumulative distribution function for
negative arguments, and the exceedance distribution function for positive
arguments, turns out to be notationally convenient and physically meaningful
and will be adopted throughout this report.

Although closed form expressions for the exceedance distribution function
corresponding to probability density function (40) are not available for
general N, the use of [6, 9.7.2] on (40) leads to the dominant term in the
asymptotic expansion of the exceedance distribution function:

N-3

2

1 u - U

1 -P (u)~ T exp as U~» +es (44)
4 dyes (“u"v) C’uov +°)

For N=3, this is precise; see (43B).
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POSSIBLE NORMALIZATIONS OF q

If we define a normalized random variable

X = —%7'2‘3 9 21/2, (45)
2 oucv(l—p )

then the characteristic function of x is given by (39) as

N-1
"7
£ (8) = £ (37657 = [14;51/5;’2 +sz] -

Nl
.-z T
- 1 - ip2e(1-02)  +8 : (46)

which has only two fundamental parameters, namely, N and o.

A second possibility is the random variable defined by

y=—1, (47)

for which characteristic function
N-1

. 2 2 )
£, - Q@{,—} 1~ 1520 + §2(1-69) (48)
uv

also depends only on N and p. However, neither of the normalizations, (45) and
(47), are of interest to us here; an alternative normalization and reasons for
its selection are given below.

17
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SPECIALIZATION TO THE SIGNAL AND NOISE MODEL

For the model presented earlier in (3)-(8), the original Eys En
parameters in (24) take the form already given in the upper line of (37).
Let a normalized random variable, relative to the additive random noise
disturbances, be defined according to

" T o)

(UV

see (5). This normalization for the particular signal model (3) is different
from both x and y in the general case above. The reason we employ h is that
the normalization depends only on the power of the additive noise
disturbances, and not on the signal strengths or correlation coefficients;
this is consistent with a system which monitors the noise-only background and
sets a threshold for a desired false alarm probability.

The characteristic function of the normalized random variable h in (49)
is given by

Ey E
1/ 2 "2
fh(f) = fq(fl(Du Z) 1- 1;———mo -~ 3 D—D—u - =

Eﬁl
=[1—1§2 + g2(s%- 2] : (50)

where we define auxiliary parameters here as
o= o RRIE, 8= AR )R IMZ. (51)

Here we used (39), (37), and (8). This characteristic function in (50)
depends on the four fundamental parameters N, Pgs Rys Ry» Where the
latter two quantities are the signal-to-noise ratios per sample of the random

components of model (3); see (8),

18
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Reference to (40) reveals that the probability density function of h
corresponding to characteristic function (50) is given by

SHPIEY |
Pp(u) = E‘(‘igl) 117 (2.,2)117] (Jg%) *

* K Blul_ exp[—22 for all u. (52)
N 1 2 2 2 2
5 8 -a B -a

For N odd, alternative forms are available from (41), if desired. The
asymptotic behavior of the exceedance distribution function of h follows in a
manner similar to that used for (44):

N-3

W
1 - Ph(u) ~ 1+°£B (g;) exp(ggé) as u—» +e | (53)
iy

The cumulants of h follow from (29), (26), and (6)-(8):

%, (n) = 5(n-1): (N-1)[(a*e)" + (a-8)"] , (5)
and in particular, the mean and variance of h are

up = (N-1)a = (1) (R R)Z,

of = (N-1)(a%+6%) = (N-1)[1 + R * R + R R (1+7)] . (55)

The two parameters, a and g, are given here by (51), in terms of the

fundamental quantities Ru’ R of the signal and noise model.

v* s

REDUCTION TO IDENTICAL SIGNAL COMPONENTS

At this point, we will further specialize the results for the signal and
noise model in the above subsection. We presume that
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Ry=R, =R and o =1, (56A)
giving, from (51),

a =R, 8=14R; (568)

that is, the signal-to-noise ratios in the two channels are equal, and the two
channel signals are fully correlated. This corresponds physically to a case
where the random signal components in (3) are identical, us(n) = vg(n),

and the independent random noise disturbances have the same power level. This
situation will hold for the rest of this section and all of the next section
where the graphical results are presented.

Equations (50) and (56B) then yield the characteristic function for
normalized random variable h in (49) as

N-1
-T2
£ (§) = [1 - ig2R +£2(1+2R)] -
ML
= U1 + )1 - ig1+R))] 2 . (57)
The cumulants in (54) reduce to
%p(n) = F(n-1)1(N-1)[(1+2R)™+(-1)"] , (58)

and in particular, the mean and variance become

up = (N-1)R, o2 = (N-1)(1+2R+2R?) . (59)
A1l the above statistical descriptions depend only on the two parameters R,

the per-sample signal-to-noise ratio, and N, the number of terms added to
yield the correlator output.
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The probability density function for h follows from (52) as

N_1

1+R Ru
* K-g- 4 (—1+—2R|u|) expé—;—z-ﬂ-) for all u , (60)

and the asymptotic exceedance distribution function from (53):

N-3

2
1+2R = ) exp (s as u=—»>+eo (61)
2(1+8)P(%5) (m“” TR

1 - Ph(u) ~

An important word of caution must be mentioned at this point: when N is large,
(61) is inadequate for evaluating small false alarm and detection
probabilities, since the succeeding terms in the asymptotic expansion
contribute significantly. For example, when R=0, the maximum value of the
dominant term (61) occurs when u = (N-3)/2 which, for N=128, yields false
alarm probability 3.86E-21, a value far below those of interest. Thus (61)
has limited applicability, being best for small N; in fact, the first
correction term to (61) yields the multiplicative factor

R -
1 + ]].._:_:g_ (N 3%6N"'3"'48) . (62)

It indicates that, for large N, u must be of the order of N2 in order for
the dominant term (61) to be fairly accurate.

Although for N odd, an alternative closed form to the probability density
function (60) of h is available from (41), the exceedance distribution function
will generate a double sum and be rather cumbersome for large N. On the other
hand, the characteristic function in (57) decays rapidly with F when N is large
and yields very nicely to the numerical approach given in [2,3]. The only diffi-
cult cases are in fact those for small N; accordingly, some analytic results for
N=2, 3,4, 5 will now be presented, based on characteristic function (57).
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GENERAL DISTRIBUTION INTEGRALS

Suppose a random variable y has characteristic function fy(;), The
cumulative distribution function of y can be written as a contour integral

{3, (5)& (6)]

f
P (u) = - j[ dg _Xﬁil exp(-iu¢) for all u , (63)
y 2% : 3

where C, is a contour along the real axis of the complex §-plane, with an
upward indentation at the origin £=0, td avoid the pole of the integrand there.

Similarly, the exceedance distribution function of random variable y can
be expressed as

f(
1 - Py(u) =-{%—”- f dg -1?2 exp(-iu®) for all u , (64)

where C_ is a contour along the real § axis, with a downward indentation at

§=0.

For u<0, both contours can be moved inte th2 upper-half F-plane, since the
exp term furnishes rapid decay there. Similarly, for u>0, both contours can
be moved mb the lower-half $-plane, to realize exponential decay on the
circular arcs tending to infinity.

DISTRIBUTIONS FOR N=2

From (57), the characteristic function of normalized correlator output h
is

£o(F) = [(1+ig) (1-ig(1+2r))] /2, (65)

and the probability density function follows from (60) as
22
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ph(U) =W KO(-]T:%R—IU') eXpG-R';R) for 111 u . (66)

There is no closed form for the indefinite integral of a K0 function; see

(6, 11.1.8 and 11.1.9]. Instead, we use (65) in (63) and move the contour

upwards until it wraps around the branch point at F=i and extends vertically upward
from there; this is in fact the steepest descent direction for the
exponentiark."Tﬁg‘%ontributions of the small and large circular arcs tend to

zero as the radii tend to zero and infinity, respectively. Under a change of
variable, there follows the cumulative distribution function in the form

2 dt exp[u(1+t%)]
™ (1t?)[1+(1+2R) (14£2) 112

¢

P, (u) = foru< 0. (67)

[~

This is a useful exact result for several reasons: the integrand decays
rapidly, has no cusps, and involves only elementary functions which are easily
computed; also the integral is a sum of positive quantities and retains
significance even for large |u).

In a similar fashion, if characteristic function (65) is substituted in
(64) and the contour moved down and wrapped around the branch point at
§ = -1/(1;2§)>:Pd along fheAvertxca1 steepest descent direction for the
exponentialy the exceedance distribution function becomes, upon a change of
variable,

+00

2
1-P (u) —-—(1+2R) exp( Jﬁ dt exp(-ut”) 177 for u > 0. (68)
[1+(1+2R)t21[1+(1+2R) (1+t2) ]

o

This is useful for the same reasons given above.

There is one closed form result possible; namely, for u=0, direct
integration of probability density function (66) yields [5, 6.611 9]

1 R 1 R
Ph(O) = arc cos(%;ﬁ) R 1~Ph(0) = —arc cos(%;ﬁ) . (69)
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DISTRIBUTIONS FOR N=3

Use of {6, 10.2.17] on (60) immediately yields probability density
function

3TIRT exp(u) for u<o
ph(u) = * (70)

-é'(le,—,RT exp(i}g-ﬁ) for u 2 0

The cumutlative and exceedance distribution functions easily follow as

Ph(u) = ?T%;ﬁy exp(u) for u <0,
(71)

1 - P (u) = ?%;ggy exp(f;%ﬁ) for u > 0 .

This latter result corroborates (61) and (62).
DISTRIBUTIONS FOR N=4

The only closed form result possible is obtained by direct integration of
probability density function (60) to get origin value

1/2
P,(0) =1 En-c cos (i) - RUL2R) ] (72)

(1+48)°
This follows by use of the integral
400
-aX B arc cos{a/8) a
dx e X Kl(ax) = I - 8(32 2) for 8 > -a , (73)
° (8°-a”) e

which follows from [5, 6.611 9] by applying a/ag to both sides.

24




TR 7045

DISTRIBUTIONS FOR N=5

Use of [6, 10.2.17] on (60) immediately yields probability density
function

rI;ZR- 1+R)u

exp(u) for u <0
4(1+R)
ph(u) =4 . (74)
1+2R+(14R)u -u )
exp foru >0
| 4(1R) (I?ZR' -

The cumulative and exceedance distribution functions follow as

Ph(U) - 2+3R—$ 1+R2U exp(u) for u S_ 0’

4(1+R)

1+2R -
1- Ph(u) = Zz;:;;g [(1+2R) (2+R)+(1+R)u] exp(%;%ﬁ for u > 0. (75)

This latter result corroborates (61) and (62). Also, this example was used as
a check on the numerical procedure [3] applied directly to the characteristic

function, which is used in the following section; the agreement was ten
decimals for numerous values of R and u.
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GRAPHICAL RESULTS FOR y=1, SAMPLE MEAN REMOVAL
SUMMARY OF PARTICULAR CASE CONSIDERED

We first summarize here the particular case that will be considered
quantitatively in this section. The input samples are

Uy = uy + ug(n) + uy(n)
for 1 <n <N, (76)

V=

n =y *vg(n) + v4(n)

where these Gaussian random variables have statistics

us(n) = vs(n) = ud(n) = vd(n) =0,

uz(n) = Su’ vg(n) = Sv, us(nivslni = (SUSV)”2 .

2 2
ud(n) = Du’ vd(n) = Dv’ udlnivdlnf =0. (77)

We presume that the simultaneous signal components us(n), vs(n) in the two
channels are fully correlated, that all other random variables are
independent, and that the two channel input signal-to-noise ratios

s S
u v

- =R (78)
b, "D,

have a common value R. More general situations have been considered in
earlier sections; however, only this special case will be numerically
evaluated here.
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The normalized crosscorrelator output, with sample mean removal (y=1), is

N . .
h = R 79
(uo) }uv (79)

where the sample ac components

N
2

m=1

< !
=

N
1
m=1
The characteristic function of h is given by (57) as

N-1
£, (5) = [(1+i)(1-15(1+2R))] 2

(81)
and depends only on signal-to-noise ratio R and number of terms N. We must
have N>2.

If R=0 and we evaluate the exceedance distribution function corresponding
to (81), we then have the false alarm probability. But when R>0, the
exceedance distribution function corresponding to (81) is the detection
probability. In the following, we plot the detection probability vs. the
false alarm probability, with signal-to-noise ratio R as a parameter;
different values of N are handled in separate plots.

OPERATING CHARACTERISTICS FOR y=1

A sample program for evaluation of the cumulative and exceedance
distribution functions corresponding to characteristic function (21), and
thereby the detection probability vs. false alarm probability operating
characteristics of the crosscorrelator with sample mean removal, is given in
appendix D. It is heavily based on the technique developed and explained in

£3l.
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In figureg*1—14 are presented the operating characteristics for the
crosscorrelator with sample mean removal, for values of

N=2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 256, (82)

respectively. The case of N=2 was accomplished by use of (67)-(69); results
for N=3 relied on (71); and the remainder for N>4 employed a numerical
procedure [3] proceeding directly from characteristic function (81) to the
exceedance distribution function. False alarm probabilities PF in the range
1E-10 to .5 and detection probabilities PD covering 1E-10 to .999 are
presented. The abscissa and ordinate on these plots are according to a normal
probability transformation, as explained below. Values of signal-to-noise
ratio R are taken as R=2", where n assumes values appropriate for each plot

in order to cover the full range of probabilities of interest.

GAUSSIAN APPROXIMATION

Suppose the decision variable of a processor is Gaussian with mean and
standard deviation m,, o  respectively when the input signal is absent,

and my, ¢, when signal is present. Then for thresholdA, the false alarm
probability and detection probability are

+o08
U= -

P. = du l" (—-""—q) - §(‘0 )
F o o ’

..“A 0 0 0

+g U-m m

1 1 1A

PD = :JA-dU ;I ¢(“'°_1"") = §( ‘-71 ), (83)

respectively, where ¢ and § are the normalized Gaussian probability density
function and cumulative distribution function:

[V
d(u) = (22 exp(u?i2),  F(u) ”«L‘“ o(t) . (84)

If we let §1 be the inverse function to §, and define

x =@ (P}, ¥ =§,(Py) , (85)
29



TR 7045
then threshold A can be eliminated from (83) to yield

M, -mM_+ o X
y=1 0 9 . (86)

9

Equation (85) corresponds to the transformation to normal probability
coordinates; thus a plot of PD Vs PF on normal probability paper is the
straight line (86) when the decision variable is Gaussian under both
hypotheses of signal absent as well as present.

Reference to (59) reveals that, for our application,

my =0, m = (N-1R, oF = N-1, of = (N-1)(1+2R%2R7) , (87)
since setting signal-to-noise ratio R=0 corresponds to hypothesis 0, signal

absent. Substitution in (86) yields

1/2
v (N-1) R172x : (88)

(1+2R+2R%)

that is, if normalized crosscorrelator output h were Gaussian, the operating
characteristics would be straight lines dictated by (88). Tnese straight
lines are superposed as dashed lines in figures 12-14 for N=9§, 128, 256
respectively. Despite the large value of N=96 in figure 12, the Gaussian
approximation is not that accurate, especially for small false alarm
prchabilities and large detection probabilities. The ex>2ct curve (solid) and
the Gaussian approximation (dashed) cross each other, and are labelled at the
crossing with the corresponding value of n in signal-to-noise ratio R=2",

For N=256 in figure 14, agreement is better and the Gaussian approximation is
probably adequate for larger N. If not, an additional term or two in an
Edgeworth expansion could be investigated with the aid of the cumulants given
in (58).
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An obvious shortcoming of the Gaussian approximation (88) may be seen
immediately:

- 1/2
limy = G%T) <1 for any x . (89)
R+

Reference to (85) then yields the interpretation

N\1/2
hm im Py = §(( <1 for any P . (90)

That is, as input signal-to-noise ratio R tends to infinity, the approximate
detection probability saturates at a value less than 1, regardless of the
false alarm probability. Thus the Gaussian approximation must certainly
deteriorate for large R; the exact discrepancy for probabilities of practical
interest is displayed in figures 12-14.
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ANALYTIC RESULTS FOR y=0, SAMPLE MEAN NOT REMOVED

In this section and the next, attention will be confined solely to the
case of scale factor y=0. The characteristic function of the crosscorrelator
output q is then given in (31) and (32), and the mean and variance of q are
listed in (23). Due to the complexity of the exponential term in
characteristic function (31), there are no general probability density
function or cumulative distribution function results for arbitrary N, like
those given earlier in (40), (41), and (44) for y=1. Here, we can have N>l.

SPECIALIZATION TO THE SIGNAL AND NOISE MODEL
For the model presented earlier in (3)-(8). the original parameters in

(24) take the form already given in (37), but now with y=0. Specifically,
characteristic function (31) is

5 \-N12 6{°) + ige{)
Fo(®) = (- ige, +8%,)  explig 2|, (91)
1-iE, + %€,
where
1/2 2
Ey = 205(5,5,)7""s Ep = DD D, S, *D S, *S,S, (1-p) »
600 < Muguys 6500 < NE(S, 0 )ude (5D, )ud-20 (5,5, ) 2y - (92)

The mean and variance of crosscorrelator output q follow from (38) according to

)112

uq = N[oS(SuSv + uuuv] >

ai = N[D D +D S

2
uv u v+DvSu+(1+°s)suSv ¥

o (5, *D, Juir20 (5,5, uy, 1 - (93)

+{S +
(Su Du)"v v Syl cPs 0y

33



TR 7045
NORMALIZED CROSSCORRELATOR QUTPUT
As in (49), and for the same reasons, we define a normalized

crosscorrelator output, relative to the additive random noise disturbances
uq(n) and vy(n) in (3) and (5), according to

h = _(LITZ (94)

(p,0,)

The characteristic function of h is available from (91) and (92):

fu(®) = f,(51(0,0,)1%) -

-N/2 .
- [1-if2e+ 2 (8%a2)] emfs — g], (95)
1-182a+§"(8"=a")

where
o = og(RR)VZ, 8 = (1R )(1R 112,
2
as=Nrr,bs= %N[(1+Ru)r$ + (1+Rv)ru - ZpS(RuRv)llzrurv] R (96)

and where we have defined

S S u u
u v u v

Ry = y Rv=7 "= /72 *"v="172° (97)
v Du Dv

The characteristic function in (95) depends on six fundamental parameters,

namely N, Pgs Rys Rv, Fus Tye The mean and variance of h follow from
(94), (93), and (97):
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1/2

Hh = N[DS(RURV) + rUrV] ’

2 2 2 2 12
of = NL(1*R )(I#R )+o2R R +(14R Jr2s(14R )ri+2o (R R, ) / rrd - (98)

LY and r, are referred to as normalized means.

REDUCTION TO IDENTICAL SIGNAL COMPONENTS

In order to prepare for numerical evaluation of the operating
characteristics of the crosscorrelator with y=0, we further specialize the
signal and noise model to the case vhere

R =R = R, o, = 1, r =Y =101r 3 (99)
see (56) et seq. This leads to

a=R, B=1+R, a=Db=N",

via (96). The characteristic function in (95) then reduces to

o Nyl
£ (8) = [(1+i5) (1-iF(1+2R)) TV 2 exp[T_—}lg-"(%—m : (100)

and the mean and variance in (98) become

up = NR¥2), ol = N[1s2R+2R%+2(1+2R)r%] . (101)
The characteristic function in (100) has a branch point at §= i, and another
branch point at § = -i/(1+2R) which overlaps an essential singularity; this
complicates some of the analytical development to follow.

There are three fundamental parameters in (100), namely N, R, r. Since

normalized mean r appears only through its square, we can presume r>0 without
loss of generality. Furthermore, if r=0, characteristic function (100)
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reduces to (57) if N-1 there is replaced by N. Thus the curves for r=0 here
can be obtained from the earlier curves for y=1 in figures 1-14 by looking at
a value for N there which is one greater; accordingly we can confine attention
to r>0 in this and the next section.

When the random signal components uc(n), v.(n) in model (3) are
absent, then R=0, and the exceedance distribution function corresponding to
characteristic function (100) becomes the false alarm probability. However,
(100) still depends on r, meaning that the false alarm probability must,
likewise. Thus, a non-zero mean in (3), i.e. r>0, is not considered a signal
attribute here, but rather is a nuisance quantity; it may, in fact, degrade
the operating characteristics if not removed.

For notational convenience in the following, we define
w = 1*2R . (102)

The magnitude of the exponential term in characteristic function (100) then

can be expressed as
2
exp| N r |, (103)
1+%°w

which is monotonically decreasing for £>0. Coupled with the observation
immediately under (39), it is seen that |fh(§)]in (100) is monotonically
decreasing for all ¥>0 and any N,R,r. This property allows for a convenient
termination procedure in the numerical transformation [3] of characteristic
function (100). It should however be observed that (103) does not decrease to
zero, but saturates at value exp(—Nrﬁb, regardless of how € increases to
infinity; thus the eventual decay of the characteristic function (100) is
furnished only by the leading factor.
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ASYMPTOTIC BEHAVIOR OF CUMULATIVE AND EXCEEDANCE DISTRIBUTION FUNCTIONS

In appendix E, it is shown that if characteristic function (100) is
substituted in (63) and {64), and the contours moved appropriately in the
complex $-plane, then the following asymptotic behaviors obtain. The
cumulative distribution function

N
Ph(u) ~ Bﬂ(y) 2Nl2(1+R)N/2].1 (;q)ﬁ.—l explu - 2T¥§§£] *

21, nsm) Nr2
* I_T “’z{'Fﬁ-)—'*——-"—z— as u-» -oo, (104)
4(1+R)

We see again, in similar fashion to (61) and (62), that in order for the
correction term in the second Tine of (104) not to be too significant, we must
have u < -N2. For reasons elucidated in (61) et seq., (104) is not useful

for large N.

As checks on (104), we note that for r=0 and N=2, (104) reduces precisely
to the upper line of (71); this latter result pertains to y=1, N=3 and is
consistent with the observation already made in the paragraph below (101). In
addition, if we let r=0 and N=4 in (104), it reduces to the upper line of
(75); this latter result holds for y=1, N=5 and is likewise consistent.

Also given in appendix E are a variety of asymptotic expansions for the
exceedance distribution function; the simplest one is

N*l

1/2 1/2 2
exp[ ( r) ] as u=>+e; >0 . (105)
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However, the same reservations as above, regarding u large relative to NZ,
are again in order.

DISTRIBUTIONS FOR N=1

If characteristic function (100) with N=1 is substituted in (63), and if
the contour is moved as indicated under {66), there follows the exact result
for the cumulative distribution function

+ob

21,42
P (u) =2 dt explu(1+t?) - L) 1 £or w0, (106)
h w 2 2 1/2 1+0)(1+t2)
& (1+2) (1+u(14t2))

(This reduces to (67) for r=0, as it must.) This integral form possesses all
the desirable attributes listed under (67).

If characteristic function (100) with N=1 is substituted in (64) in an
attempt to get the exceedance distribution function, the analysis becomes
rather difficult, due to the overlapping essential singularity and branch
point of the integrand at § = -i/w. This problem is treated in detail in
appendix F, with the result that the exceedance distribution function can be
found via the characteristic function approach in terms of two integrals; see
(F-21)~(F-23). However, a better numerical procedure for the exceedance
distribution function is the direct result derived in (F-33); this latter
integral is the one actually used here to generate the operating
characteristics for y=0, N=l.

DISTRIBUTIONS FOR N=2

The characteristic function is available from (100):

P4
£, (5) = (1+ig) x(1-ip0) ™ exp({—%*—;) = P, (107)
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where o = 1*2R. The probability density functions corresponding to these two
characteristic functions are [5, 6.631 4]

py(u) = exp(u) U(~u) ,

2
1 +2 2 1/2
py(u) == exp<- d w’“) 10(;”1(2(;) ’) U(u) , (108)
where U is the unit step function
0 for u<0
U(u) = . (109)
1 for u>0

The probability density function of h is given by convolution

+00
ph(u) = j‘dt pl(t) pz(u—t) for all u . (110)
-— O

Substitution of (108) in (110) yields

2
li—wexp(x-%:—m foru<0
Py (u) = (111)

2 1/2
1 2r 2r 2(1*0)u)
Tra EXPG - 1"‘(») QCI/Z(lﬂn)l/Z s ( " / ) for u > 0

where the Q-function is defined in [7] and the two integrals encountered have
been evaluated by use of [5, 6.631 4] and [7, (9)], respectively. The
cumulative and exceedance distribution functions of h readily follow from
(111), the latter by means of [7, (42)]:
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2
1 2r
Ph(u) =mexp(z -—1-;“—’) foru<0,

1/2
2r 2u
1-Ph(“)=°()—177’(;“) )

2 1/2
T exp(; - %:m) 7177 (?(1;w)€) :) foru>0.  (112)
w (1"‘«))

(As a check, for r=0, then (111) and (112) reduce to (70) and (71)
respectively, as they must.)

DISTRIBUTIONS FOR N=4

The characteristic function is available from (100):

A
£, (5) = (1+1F)Ox(1-ipu) exp({{égu;)s £0)*,@) ,  (113)

where w = 1+2R. The probability density functions corresponding to these two
characteristic functions are [5, 6.631 4]

Pp{u) = ~u exp(u) U{-u) ,

2
py(u) =y exp(. !.’rgi_) RS A L AT (114)

The probability density function of h is given by convolution (110). 1In
preparation for that result, we use the shorthand notation

1/2 w172
qM(“)’QM(Z”C,Z‘HEh ; <'2—"%—‘”)-) )

(o) - Qmé‘”(%)llz ’ (%2)1/2) (115)
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where the Qy-function is defined in [8]. We also present a new integral
result that will be needed in the sequel,

400
j;dx X QM(b ax) = E__{b20M+1(b’a°)+2M QM(b,ac)—azczQM_l(b,ac)], (118)
a

which can be interpreted as the limit of [8, (31)] as p—»0+. Substitution of
(114) in (110) yields probability density function

( 2
( 1 )4 exp(x - %;)Er‘z‘*Zw(l*w)—(l*m)zu for u <0
1+

(117)

|
A

ph(u) =

2
W expéj ~ :m)[;rzq3(u)+2m(1+m)q2(u)-(1+m)2uq1(u)] for u >0

where (115) has been used; the upper line employed [5, 6.631 4], while the
Jower line used (116) and an integration by parts procedure to be elaborated
below .n the exceedance distribution function evaluation.

The cumulative distribution function for u < 0 follows readily by
integration of (117):

1 ar?Y 2 2
Ph(u) = z—~ )4 explu - 15 4r°+(1+w)(1+3w)-(1*w)“u for u < 0. {118)
1+

For u > 0, a modified approach is required. Integration of (110) yields
cumulative distribution function

P (u) = jdt p,(t) Py(u-t) . (119)

Probability density functions Py and p, are available in (114), and
cumulative distribution function P1 follows as
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(1-u)exp(u) foruc< O
Pl(u) = . (120)

1 for u >0

Substitution of (114) and (120) in (119) yields, for u > 0,

u

2
gdt -2-‘%? exp(— ________t+3r) tllz Il(4r't1/2/w) +
0

+o

+ fdt %‘; exp( t+4r~) 172 I (4rt1/2/) (1-u+t) exp(u-t) =

u

= 1~€|2(u) + exp u- ) ‘[dt t exp( )Il(th‘tllz/) (1-u+t), (121)

via [8, (22)]. We now integraie by parts, letting U(t)=1-u+t, and the
remainder dV(t). Then using [8, (22)] again, we find

2
2ur 4r
V(t) = - (1+m)2 expCo(Im)) qz(t) . (122)

Combining these results, (121) and (116) yield

2
~ 1 4
1 - Pp(u) = qy(u) - Y exp(u - 17‘:;) a,(u) - jdt a,(t) =

u

- 2 _
= 3p(u) - “(%f‘ exp(: - %i—w)[zwzq3<u)+<1+m)(1+3w>q2(u)-<1+m)2uq1(uﬂ
for u > 0. (123)
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The final results for N=4 are given by (115), (118), and (123). This case was
used as a numerical check on the computational approach [3] proceeding
directly from characteristic function (100) to the exceedance distribution
function, with excellent agreement for numerous values of R, r, and u.
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GRAPHICAL RESULTS FOR y=0, SAMPLE MEAN NOT REMOVED

SUMMARY OF PARTICULAR CASE CONSIDERED

The situation of interest has already been summarized in (76)-(78); in
addition, we have a common value for the normalized means,

" v (124)
= =T
03/2 03/2

and the normalized crosscorrelator output is not (79)-(80), but rather is, for
Y=0’

h = ™ )1/2 2 : (125)

The characteristic function is given by (100):

-
f,(8) = [(1+if)(1—1'rw)]-N/2 exp({%%‘%;), (126)

where w = 1+2R. When the signal is absent, then R=0; however the false alarm
probability corresponding to this characteristic function still depends on r.
Thus since the sample mean has not been removed, the operating characteristics
will also depend on r. Since results for r=0 can be found from an earlier
section, we only consider r>0 here.

OPERATING CHARACTERISTICS FOR v=0

A sample program for evaluation of the cumulative and exceedance
distribution functions corresponding to characteristic function (126), and
thereby the detection probability vs. false alarm probability operating
characteristics of the crosscorrelator without sample mean removal, is given
in appendix G. In figure§*15-35 are presented the operating characteristics
for values of

See prge 6s o sez.
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N=1, 2, 3, 4, 8, 16, 32, 64, 128, 256, (127)

and for various values of r. The case of N=1 was accomplished by use of (106)

and (F-33); results for N=2 employed (112); and the remainder for N>3 employed

a numerical procedure [3] proceeding directly from characteristic function

(126) to the exceedance distribution function. False alarm probatilities Pe

in the range 1E-10 to .5 and detection probabilities PD covering 1£-10 to

.999 are presented. The abscissa and ordinate on these plots employ a normal
probability transformation, as explained earlier in (84)-(86). {

Values of signal-to-noise ratio R are taken as R=2", where n assumes
values appropriate for each plot in order to cover the full range of
probabilities of interest. Values of normalized mean r in (124) have been
taken as r=1 and 2, with the exception of figure 19 where one example for r=4
was added.

Without exception, increasing r from zero degrades the operating
characteristics of the crosscorrelator. For example, figures 17, 18, 19 give
a succession of operating characteristics for r = 1, 2, 4 respectively, and
for common values of signal-to-noise ratio R. (In order to determine the
operating characteristics for r=0 here, we can look at the earlier results in
figures 1-14, but for a value of N which is one greater there.) Thus, not |
removing the sample mean from the crosscorrelator output requires a larger
threshold setting for a specified false alarm probability and thereby lowers
the detection probability and degrades performance. {

GAUSSIAN APPROXIMATION

If the crosscorrelator output is Gaussian, for both signal absent as well
as present, the earlier derivations in (83)-(86) pertain. Now reference to
(101) yields statistics

2 2
m0=NY‘, m1=N(R+r)’

2 _ N(1+2r2), of - N[1+2R+2R%+2(1+2R)r?], (128)

9 =
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since setting signal-to-noise ratio R=0 corresponds to hypothesis 0, signal
absent. Substitution in (86) yields the normal probability approximation

1/2

1/2 2

y = N R+(1+2r") 1?2 . (129)
[1+2R+2R%+2(1+2R )r?]

These straight lines are superposed as dashed lines in figures 32-35 for N=128
and 256. The Gaussian approximation is moderately good for large N such as
256, and in fact crosses the exact curves (solid) at a point which is labeled
with the corresponding value of n in signal-to-noise ratio R=2".

An obvious shortcoming of the Gaussian approximation (129) is apparent:
N 1/2 »
limy = (?) for any x, r . (130)

R-»a0

Reference to (85) then yields the interpretation

N 1/2
1im PD = § (?) <1 for any PF, r. (131)

PE T

That is, as input signal-to-noise ratio R tends to infinity, the approximate
detection probability saturates at a value less than 1, regardless of the
false alarm probability and normalized mean r. Thus the Gaussian
approximation must certainly be inaccurate for large R; the exact discrepancy
for probabilities of practical interest is displayed in figures 32-35.
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SUMMARY

A closed form expression for the characteristic function of the output of
a crosscorrelator, with or without sample mean removal, has been derived in
(23)-(24) for general values of: the number of terms added to yield the
correlator output, the means and variances in each of the two input channels,
the degree of correlation between the two channels, and the scale factor
employed in the sample mean removal. A program for the evaluation of the
cumulative and exceedance distribution functions of this general case has also
been presented. These results can furnish the basis of a study of the error
probabilities of a correlator required to decide between alternative
hypotheses on the input statistics [1]; this problem will in fact be the
subject of a future technical report by this author.

The general results were first specialized to a signal and noise model,
and then to the two distinct cases of sample mean removal (y=1) and no sample
mean removal (y=0). Plots of the operating characteristics for numerous
values of N and signal-to-noise ratioc R were then displayed for a wide range
of detection probability vs false alarm probahility. Some new analytic
results for cumulative and exceedance distribution functions, especially for
small N, were derived and used as checks on the general numerical procedure,
Comparisons with a Gaussian approximation indicated quantitatively when that
simplification is valid. Asymptotic results derived were useful for small N,
but not for large N except in the region of probabilities too small tc be of
practical importance.
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APPENDIX A. CORRELATOR QUTPUT INDEPENDENCE OF MEANS
If we let scale factors a=1 but g#l in (11), we still get y=1 from (13).

This means that correlator output q in (12) is independent of My uys B
To see this directly, let

where means

y =2_=0. (A-2)

Then (11) yields, with a=1,

which is obviously independent of the actual value of mean u,- Also, (11)
yields

N

;n =1, - %':EE z, * “v(l'a) ’ (A-4)
m=1

which still depends on u, and 8. When (A-4) is substituted in (12), we get
correlator output

N
q = :z% Gn z, - ﬁ»:§§zm + uv(l—e) . (A-5)

But since

N
2 u =0 (A-6)

A-1
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from (A-3), (A-5) reduces to

N= n=1 m=1
N N N
"'E Inin ~ %I'E Im Ezn (A-7)
n=1 m=1 n=1

in terms of the ac components defined in (A-1) and (A-2). Correlator output
(A-7) is obviously independent of means y , Hy and scale factor g in (11).

A-2
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APPENDIX B. A USEFUL INTEGRAL OF EXPONENTIALS OF MATRIX FORMS

For symmetric KxK matrix M, with det M>0, the following K-fold integral
is well known (see for example, [9, section 8-3]):

1/2
K
fdx exp[- ZXTMX+N'X] = [?%QM} exp[% NTM“lw]. (8-1)

Here X and N are Kx1 column matrices. We wish to extend this result to the
case of double integral

1= (20) H‘du dv exp[— -%- u'Au -% vy + uTcv + DTy + ETV] , (8-2)

where A and B are symmetric without loss of generality, and the integral
converges; here, matrices A, B, C are KxK while U, V, D, E are Kxl. Notice
that if we had the apparently more-general term

T T T(

u'ev + vie,u = uf(ey + c;)v , (8-3)

we would simply let C = CI + Cg, and thereby immediately have form (B-2).

To accomplish the evaluation of I in (B-2), identify M = B, L TLI ET,
X = V in (B-1), and thereby evaluate the V-integral in (B-2), with result

12
fdv ces = [diz) ] expB—(UTC + eNeLicTy + Eﬂ i (B-4)

Substituting (B8-4) in (B-2), regrouping, and using the symmetry of B (and
therefore B’l), there follows

-K/2
(det 8)

B-1
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Now reemploying (B-1) with identifications M = A - ¢8-1cT, N = D + c8~lE,
X = U, we get a closed form result for (B-5):

1

-1/2
I = Eiet(AB - ca‘lcra)] exp|3 Tl

B °E +
+ Joves ey Ta-celcy L oven )] (8-6)
This is the desired general result for integral (B-2).

As an aside, there is probably a more symmetric closed form result than
(B-6), since if we represent (B-2) by I{(A, B, C, D, E), we quickly see, by
interchange of dummy variables U and V, that

I(A, B, C, D, E) = I(B, A, C, €, D). (B-7)
However, we have not discovered the symmetric form of (B-6). The present form

follows as a result of the sequential integration of (B-2), first on V, then
on U.
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PROGRAM FOR CUMULATIVE AND EXCEEDANCE OISTRIBUTION

FUNCTIONS VIA CHARACTERISTIC FUNCTION (23)-(24).

The numerical procedure employed in appendices C, D, and G here is

heavily based on [3].

The choices of L, Ao, b in lines 90 to 110 to control

truncation error and aliasing are also made according to the method of [3].

The parameters in (24) are evaluated once in lines 210-260 so as to minimize

computation time.
[3, pp. B-11 - B-12], and employs a zero-subscripted array.

The FFT subroutine used in lines 1030 et seq is listed in

A sample plot of

the cumulative and exceedance distribution functions follows the progranm.

19 ! CROSS-CORRELATOR WITH SAMPLE MEAN REMIWALS HUZD TR 7845

j=1%) H=% U Humber of terws sumnmed to v eld outpat
34 Gamma=.5 I 3cale factor in zample mean remoual

38 Mu=-,4 VU channel mean

Sa Mu=,3 oY channel mean

4] Su=.7 Vool o chanmel standard dewiation

7Y Sa=, B YN chanmel standard deviation

24 REo=, & I Caorrelation coefficient

240 L=e&0 oLimit on integral of char. function
1o Delta=.12 I Zampling increment on char, function
118 Be=,29+i2#F1-Deltad }  Shifr by, as fraction of alias interwal
128 ME=2~8 v Size of FFT

130 PRINTEIx Iz @

143 PRINT "L =";L,"Delta =";Delta,"b ="{Bs,"M& =" {N¢

158 FEDIM ﬁij.ﬂf—l-,T(B:NF~1ﬁ

1612 DIM Wo@ 10230, vi3:18233

178 Su2=SuEsy I Calocwlate

13208 Su2=Suxly ' parameters

134 Ti=1-GCamnma

2ea T2=T1#T1

218 El=2*RhosSu*Su

228 E2=Sug+«su2* 1 -Fho<Rho?

2308 FI1=E1%T}

248 F2=E2%T2

250 Gi=H#Myu«MueTt

260 GZ=,3%H« {32 MusMu+SuZ MU My-El3MuxMu T2

2v1 Hl=, 5*'H-l-

28 Mug=Gl+iH-Gamms r #*Rho®S0eSy ' Megan of random  variable g
238 Muy=Mug+bs P Mean of shifted variabls o
3806 S

318 YCBr=,5%#Nx)t avMuy

320 FOR Ns=1 TO IHT<L-Delta’

338 “i=leltasis t Argument =i of char. function
340 A2=71 %Ki t Calculation

35@ Ti=-HXi#*F1 L of

360 Te=1+42%F2 ! characteriztic

378 CALL Drad-52e52,2i+#G1,T2,TL1,A, B> | functieon

280 CALL Logei+¥2#E2,-%i*EL1,C,D> by doin

395 CALL LuogiT2,T1,E,F>

4006 CALL Exp¢RA-N1#C~-, S%E,B~H1#D~,S%F+Xi*Bzs,Fyr,Fuil

C-1
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410 M==Nz MOD MFf ' Collapszing

428 SCMs =Rz ) +Fur o Hs

424 YoMz =Y iMasr+F w1 <HNs

440 NERXT Hs

4Sa COLL Fer iR cmf  Hos) YO b @ subscript FFT

468 PLOTTER IS “GRAPHICS"
478 GRRPHICS

488 SCHLE @8,.,Mf,-14,0

490 LINE TYPE 2

589 GRID Mf-3,1

518 FEIUF

528 LINE TYPE 1

53a B=BssMf*lelta  (2%P1: v Origin for random wartable q
544@ MOVE E,@

554 DRAW B,-14

SEa FEHLUF

5706 FOR Ks=8 Tu My-1

526 T=Y(KsssFl-Ks-NMf

S99 AlKsr»=,5-T I Cumulative probability 1n K<)
EBR YCK3)=Fr=,5+T I Exceedance probability yn YizxD

618 IF Pr>=1E-12 THEN Y=LGTC(Pr>
620 IF Pri=-1E-17 THEN Y=-24-LGT{-Fr)
638 IF ABS«Pr<1E-12 THEN ¥=-12

€48  PLOT Ks,¥

656  MNEXT K=

656  PENUF

678  PRINT Yi@ag¥olopv(Mf=-2)3viNF-10
£89  FOR Kz-0 TO MP-1

€98 Fr=XiKs)
788 IF Pry=1E-12 THEN ¥=LGT(Pr)

718 IF Fr<{=—1E-12 THEN ¥=-24-LGT(-FrJ

720 IF AESCFrI<1E-12 THEN Y=-12

738 PLOT Ks,¥

748 NEXT Ks

750  PENUF

768  PRUSE

776  DUMP GRAPHICS

78@  PRINT LIN:¢S:

798 PRINTER I3 t&

gon  EMD

g19

820  SUB DiwiXl,¥1,%2,¥2,R, B> V21022
830  T=NIEX2+72EY2

248 R=CRL*XKZEYIFV200T

850  B=(V1#Ai-Hlxv2y T

866  SUBEMD

gre !

889  SUB LogiH,7¥,HA,E: I PRINCIPAL LUG(Z)
890 =, GHLOGHFH+Y#7 )

988 IF %<>9 THEH 930

9148 B=.S#PI#5GHY)

9za GOTO 956

930 B=ATH(Y %)

340 IF %<8 THEH B=B+PI#{1-2%{¥Y<0J>
95¢@ SUEEND

960 !

c-2




97ve
9898
998
1900
1918
1829
toz8

SUB Exp(X,Y.A,B?
T=EXP M)
A=T*COS:Y)
B=T*SIHY)
SUBEND

}

SUB FfelOz N BO%),v{%d)

b EXPCZ)

M=2~ITHTEGER

TR 7045

9 SUBSCRIFT

C-3
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e— Orig \\for sHifted vajriable ‘

. X 4

exceedance
distribution

-7
cumulptive
distrlibution

L \

-12 ¥
M Nevatlive Probdbilitieg
-11 !

0 n/A u 2n/A

Figure C-1. Cumulative and Exceedance
BDistribution Functions
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APPENDIX 0. PROGRAM FOR EVALUATION OF OPERATING
CHARACTERISTICS FOR y=1

The comments in appendix C are relevant here also. The characteristic
function used as the starting point is given by (81). Sampling increment a
employed on the characteristic function can be coarse for small signal-to-noise
ratio R, but must be finer for larger R. The quantity Delta0, 45, in line
30 is that used for R=0; all other A values are sub-multiples, as indicated by
lines 110-130. A table follows.

N | 4 6 8 12 16 24 32 48 64 9% 128 256

o0 .09 .08 .06 .05 .05 .05 .05 .04 .03 .03 .02

Table D-1. Values of 8, for y=1

Let 8 denote the sampling increment employed for a particular value of
signal-to-noise ratio R;>0. The cumulative and exceedance distribution
function values are available at spacing s = Zﬁ/(MfA) in general, where Me
is the FFT size. If, for example, A = AOIZ’ then s; = 250, meaning
that probability values occur twice as coarsely for R1 as for R=0. Then in
arder to plot detection probability Pp vs false alarm probability Pe
without interpolating points, it is necessary to skip every other PF point
available, and only plot those PF’ PD pairs corresponding to the same
threshold. More generally, if &y = 45/K, where K is an integer, then
$1 = Ksp,s and we plot only every K-th point of the available Pr values.

Here we have chosen K to be a power of 2, for the purpose of ease of plotting.

We choose bias (shift) b in line 80 in order to give a random variable y
which is virtually always positive for R=0; see [37. We then keep b fixed as
R increases, which makes the probability of y>0 even greater. This feature of
choosing the same b for all R>0 enables an easy comparison of Pp and Pe,
since common threshold values are then conveniently realized.

D-1
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It was observed under (23) that the characteristic functions (39) or (81)
have monotonically decreasing magnitudes for all ¥>0. This makes the choice
of L, the truncation value on the characteristic function integral in (63) or
(64), rather simple; all we need to do is monitor {fh(f)| of (81) until it
decreases below a tolerance, here taken as lE-12. There is no c(rial-and-error

procedure required as in [3] to guarantee negligible truncation error.

Subroutines Exp and Log have already been listed in appendix C, and so
are not relisted here.

1a ¢ GHMMA = 1 SAHMFLE MEAN REMOVHL

g x| Hio =53 $ M, MHumber of term: zumted
i Dely 2- 57 ! Imitial dJelta
30 Bs=FI-Delt 59 t Eias b

58 ME=2-15 ! svze of FFT
35 QUTFUT 0 "GRAMN = 19" H o ="§He

73 QUTRFUT g

a0 DATH -2,-1.,8,..5,1,1.5,2,2.9,2,3.9 ,4._

3a FERDL iz xo 4 SHE R=2-

184 DUTPUT @ Hz*s;

11 DATA 1,2,2,2,4,4,4,5,8,16,16,32,564

128 FRERD Ideltai«)

1382 MAT Delta=dDsirtadr-Idelra

148 QUTPUT A:Delt s » ;

154 DATA LE-1A,1E-% 1E-3,1E-T,1E-6,1E-S,1E~-4,.981,.91,.1,.5,,%3,.9%3,,3233
160 FEAD =cvs#

170 DIM Madli12e, Id=1tac@rtds, Delraialildy, Scilitds
120 DIN “ygiatet @119t

138 FOR I=1 T0O 14

280 Sed Yoo =FHTeoph oS Lo

210 HEST 1

2z0 S=Sci

239 B=Scilg

249 Scaleg= B=Z - vid-33

259 A1=38

269 Ae=1l7u

278 ¥Y1=35

280 Vaesyl+r « Y

290 PLOTTER 1% SR

390 LINIT S, 52,51, 7vE

316 OUTPUT Fasyvyss”

2za SCALE 5,8,%,

338 FOR I=1 T 14

249 MOVE Z,%c0l’

259 DRAM ¥,3c il

el HE&T I

370 FOFP I=1 TO 11

3350 MOVE Scilo, S

328 DRAW Scil»,E

499 HEXT 1

419 MOYE =,%

420 DRRW @,0

439 FENUF

7
~
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Ao R e S 00 N e D P e O D 00 N T R DR e O ) T U0 B G e 0D 0 O T ke
OO AT ORI TCTETITIITTOETDC0 00O RGO

X0
LA E ]
&

838
398
980
310
928
939
940
958
9£46
3va
388

el
-~
&

Ml=0¢-1

Me=M¢ 2

FOR In=80 TO 12
IF In:® THEWM Sof
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Re=0

GOTO S19

Rc=2 Hsuln? b SHR R=2n

DUTFUT a3"R ="iRc," Delta =";Deitailn:

RASSIGH #1 TO “REBESCISY Vo Temporary ztorage for
Delta=Daltailn !

F2=Fcel

R21=R2+1

NiZ=¢Hc-12-23

Mur={(Hc~-12%Rkc !
Muw=Myu~-+Bs !
REDI#M SeBiMia,waBiMLn

MAT s=lkr

MAT Y=IER

Si@r=g

VeBa=,S9%Delt asMuyy

Ls=a

Le=Lz+1

Ki=leltrta*ls ' Hrgumenrt =1 0O
CALL Logil+xXis@i*R21,~Ri1sR2Z,A1,Bi2

CALL Expid-N1Z*Ai,¥i#Bs-N12%Bi,Fyr ,Fuin
Mz=Ls MOD Mf

ARr=Fur-Ls

Ai=Fuyy L=

KMz =¥ Mz +Ar

ViMz=7ViMz s +R/i

Magsq=Rr<Ar+Ai <M

IF Mag=q:>1E~-24 THEHW gS@

GQUTFUT ;" Hi =%pxi® Mag =";S0R(MHagszqg?
CARLL Fielizulif,sesa ,Yoienn
FOR Mz=8 TO #1

T=Yu Mz "PI-Mz-M¢
AiMz=,5-T !
TiMzr=m, S+T !
HEXKT Ms

OUTPUT B3YrBry Yol dMi-103Y¢MLn
FLOTTER IS "GRAFHICS®

GRAFHICS

SCRLE B,My,~14,8

LIKE TY¥FE 3

GRID Mf-2,1

PEHUP

LIME TYFE 1

FOR Mz=9 TO Mi

Pr=yY(Mg)

IF Pr:=1E-12 THEN ¥=LGT{(Fr>

IF FPr<=-1{E-12 THEH ¥=-24-LGT(~Pr:
IF RES(Pr»{1E-12 THEH Y=-12

PLOT Mz,¥

NEXT M=

PEHUF

Mean of rando

m

false alarm probabilitey

var-iabile h

Mearn of shifted variable w

char. fn.
Calculation
of
characteristic
function
Fuds=i

cumdltative diztributiaon function
Exceedance distribution functian
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Q3

1008
1919
18209
1638
1948
1856
1868
1478
feso
1639
11438
i11a
1129
11386
1148
11508
1168
1178
1139
1136
1288
1218
1228
1230
1240
1259
12€d
1276
1280
1299
1300
1316
1229
13209
13409

bt et b et e g
SO SR U TR R TC I )

[
£
-
@

[N WY xRN I R
O E D

1459
1478
1558
15c8
1578
1550
1598
1609
1618
1620
1€39
1648
1559
1660
1670
1680
1698
1760

-

FOR Mz=0 TU M1
Fr=y s
IF Fro=1E-12 THEN (=LGT(Pr i

IF Pro=-1E~-12 THEN V“=-24-LGT(=FrJ

IF RES Fro<1E-12 THEN Y=-12

FLOT May

MEXT M

PENLF

DUME GRAFHICS o
QUTFUT @g»"

IF In»9 THEH 1200

FOR Ms=mz TO M1

IF viMz o= THEHN 11320 H
MEST Mz

MI=Hz -1

REDIM moMZiM3s «
FOR Mz=M> T M3

MM =FHInvpehi CF (M2 2

HEXT M= {
FPRINT #1;: 0% vt Ztore false alarm probability

GUTO 1338

REDIM XviM2iM3D -
RERL #i,ku>0 ' Read in false alarm probabilivy

Id=sldeltaclnd

Jz=n2-149

J3=INT M2-1d>+1
FOR J=J2 TO J3
TP IR phi O 0T

MEXT J “
PLOTTER IS "3372R"

LIMIT ¥i,x2,v1,v2

QUTPUT FB5,; " wa3

SCHLE £,8,3,E

FOR J=7% 7O

T=J*x1d

IF T:M3 THEHW 1379

PLOT KeToa,%dJ0

MHEXT J

PEMNUFP

HE“T Ir

END

!

SUB Exprid,T,A, B I OEXP(ZS a
)

SUR Logid, A, B ' PRINCIPAL LOG.Z)D

}

DEF FHIrnuphi I IHYPHICHEY via AMS 53, 2€.2.23

IF - :»@) AMD ¥~ 1: THEH 1699
P=5, 993393393 IE 96+ 2xK-1)
GOTO 1679

IF #=.5 THEM RETURH 9

p=i

IF %7.5 THEH P=.5-(%-,5)
P=SORC-2#LOGCP )

T=14F%(1,432705+P#(, 1 292€9+P%.801308))
P=F-(2.515517+F>(.202853+P+«,@18328)>>/7

IF 1.5 THEM F=-F
RETURN P

FHEND
]

éUB Fee13ziN, Ko ,Y %50 I N <= 2 12, N=2~INTEGER, @ SUBSCRIPT
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APPENDIX E. ASYMPTOTIC EXPANSIONS FOR DISTRIBUTIONS WHEN r>0

The characteristic function of interest is given by (100) and (102):

p(8) = R (L-ig)™ ey B2 ], (E-1)

where for notational convenience in this appendix, we let

AV g" n = er, W = 1+2R . (E—Z)

The cumulative distribution function is obtained by substitution of (E-1) in
(63):

P (u) = ;i% C{ dy ;’1(1+i§)"“ (1-ifw)™Y exp[&é§?3~— iuf] . (E-3)
+

The v-th powers are principal value, being positive real where C_ crosses
the positive imaginary axis.

Now let z = 1+i¥% in (E-3), yielding

Ph(u) = T%% ‘S\ dz (z—l)'1 27 (1*w-wz)™V exp[}%&%%g - u(z-li} . (E-4)
C
1

The contours C_ and C; in (E-3) and (E-4) are depicted as dashed lines in
figure E~-1. The pole at.f=0 is moved to z=1; the remaining singularities are
branch points (v non-integer); the v-th powers are positive real where C1
crosses the positive real axis. For u<0, an equivalent contour te Cl is

that indicated by C, in figure E-1, since the exponential in (E-4) furnishes
rapid decay in the left-half z-plane. We write (E-4) in the form

Ph(U) = ?—;&Qll j‘ dz z7° exp(-uz) gl(z) . (E-5)
C
2

where

E-1
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gl(z) = (1~-z)'1 (1+w-w2z)™V exp[}é&%%%] . (E-6)

;_ ‘,‘qne

f': Z—P'ane

Figure E-1. Contours of Integration for Cumulative Distribution Function

In order to get the asymptotic development of (E-5), we expand gl(z) in
a power series in z,

9;(z) = g4(0) + gi(0) z + ..., (E-7)
where
9,(0) = (1+0)™ exp(yr 5 (0) =1+ (E-8)
1 Tr(; ’ m 1+m (1"'&))2 *

Appeal to [10, p. 96, (4)] tnen yields (for all v)

v=1 v-2
P (u) - exp(u)[,if—;‘-}— 0,(0) + S5 0100)| -

- T (100) ™ ()t exp( - 1-»'%.;][ - “il(l TRt (1+:,)2)]

Substitution of (E-2) in (E-9) then yields result (104).

e
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When (E-1) is substituted into (64) instead, we obtain the exceedance
distribution function in the form

1- Ph(u) = ?%;-‘S dg f”l (1+i9)™° (1-ifw)™ exp{fé%?; - iué} . (E-10)
C

Now let z = %-- if, to get

-1 1 -1 1 -V -y
1~Ph(U)=m dz (Z—Z;) (1""“—’—) (wZ) *
C
3

* exp 1159313 + u(z --%{] . (E-11)
w 2

The contours C_ and C3 in (E-10) and (E-11) are depicted as dashed lines
in figure E-2. The pole at ¥=0 is moved to z = 1/w; the remaining
singularities are branch points.

J‘i Z-plane

Ce

e e o ol

Figure E-2. Contours of Integration for Exceedance Distribution Function

For u>0, an equivalent contour to C3 is that indicated by Cq in
figure E-2, since the exponential in (E-11) furnishes rapid decay in the
left-half z-plane. We write (E-11) in the form
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w Z

1P (u) = o (1) exp(} Eﬁﬁ) 11' j; dz 27V exp[;z + —%;]gz(z) , (E-12)
C
4

where
-1 wZ \-v
92(2) = (1-0)2) (1 - m . (E—13)
As above, we expand g,(z) in a power series in 2z,
9,(z) = 1 +w(l + T¥5) zZ+ ... (E-14)

and substitute it in (E-12); employment of [10, p. 105, (2)] now yields (for
all v)

1 - Ph(u) ~w (1%0)™ exp(} Ei%) *

T 4]

as u—> +oo, (E-15)

where Iu(z) is the modified Bessel function of the first kind. This is the
general result for the exceedance distribution function; the various
parameters given in (E-2) relate it back to the problem of interest in the
main text.

As a check on this result, we let r—=0; then n-»0, and (E-15) reduces,
via [6, 9.6.7], to

1= pa) = ™ o 1™ 7 expteuro) [iesh i 25)]

as u—=> +%; r=0. (E-16)

Employing the identifications in (E-2), there follows from (E-16)
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1-P(u)~ WR (z'(r:gy) e""(m)

*E+ LR (N-2) (W4+8R) | oy vt pg (E-17)

1+R 8u

In order to compare this result with that for y=1, sample mean removal, we
must replace N here by N-1; see the paragraph under (101). When this is done,
(E-17) reverts precisely to (61) and (62).

Returning to the general result for the exceedance distribution function

in (E-15), if we keep n>0 and use [6, 9.7.1] for large arguments of Iu(z),
there follows the simpler (less accurate) result

nt
v*’"z
1-P(u) ~ [2#”2(1"' )V n 7 I] ® *

* u exp[ (1/2 1/2) ] as y—» +900, (E-18)

When (E-2) is substituted in (E-18), the result quoted in (105) follows.

As a special case of (E-18), if v=1 (i.e. N=2), then

3/2 2
1 -P (u) ~ Q exp [- 161/2 - n1l2) ] as u~s4o; y=1. (E-19)
h 231,2(1"’&)(“11)1,4 w v

E-5/E~6
Reverse Blank
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APPENDIX F. EXCEEDANCE DISTRIBUTION FUNCTION FOR y=0, N=1, r>0

CHARACTERISTIC FUNCTION APPROACH

When characteristic function (100) with N=1 is substituted in (64), the
expression for the exceedance distribution function becomes

-4
1P, (u) = 15 { dg 51 (14712 (1-iga)7L/2 exp[%g—;—;— iuf], (F-1)

where w = 1+2R as in (102). The square roots are taken as +1 at 8=0. For
u>0, the contour C_can be modified to that indicated in figure F-1, where
the contributions of the large circular arcs in the lower-half §-plane tend to
zero. The small circle of radius o centered at branch point £= ~i/w must have
0 < p < 1l/w, since the latter is the distance to the pole at the origin.

| ?\m\e *i

i
w T‘,/

3
|

)

J
V, 4|1

l

Figure F-1. Equivalent Contours for (F-1)

It is easy to show that the two vertical contributions in figure F-1 are
equal. Under the change of variable

2
gLt (F-2)
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the sum of the two vertical contributions to exceedance distribution function
(F-1) becomes

1/2 e
2 -1 ‘
V(o) = Zmu exp(— u:r ) 5 dt (1+t2) *
(“m)llz 1
-1/2 2
2 u2 r
* (1+ptt©) expf{- =t“ - ) (F-3) .
(-

This integral remains convergent even as p»0+. Furthermore, the integrand
decays rapidly, has no cusps, and involves only elementary functions; also the

integral is a sum of positive guantities and retains significance even for
large u.

On the small circular contour Cp in figure F-1, let

it =-% - p exp(ie), (F-4) 7

to obtain, for the circular contribution to the exceedance distribution
function, the quantity

——

L

1
2
Clo) = > (1';’ ) exp(— 3‘":—'"-) o112 Sde (1-wpE)~L * ’
n w .

-1/2
*(1 - 2% E) exp(i 3+ %E* + oUE) . (F-5)

where we define in this appendix

2 2
A = -:’:?- = (F:?K) , E = eXp('iQ) . (F-S)
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The exceedance distribution function is given exactly by the sum of (F-3)
and (F-5), for any 0 < o < 1/w. It would be advantageous numerically to let
o0+ in these two equations; however, the limit of (F-5) is not obvious and
can easily be done incorrectly.

AN ERRONEOUS APPROACH FOR C(p)

It is tempting to let o0+ in those locations in (F-5) where it will "do
no damage", obtaining for the integral with scale factor 91/2 the quantity

3
1/2 Y .‘]
Ips 0 Sde exp{1 5 * S exp(-ie)| . (F-7)
-
(The fallacy of doing this for a residue cal .lation with an essential
singularity is demonstrated in the next subsection.) Furthermore, the limit
of (F-7) as p»0+ can in fact be deterniined in closed form, as follows.

Observe that the integrand of (F-7) has a saddle point in the complex e-plane
at

o, = -iL, L =,ln(g%) 3 (F-8)

this is in fact the only saddle point in the (-w,=) strip in the e-plane. Now
let z = o-e, getting for (F-7)

wtil

Ip = (2A)1/2 X dz expE -;- + % exp(—iz)‘-’ . (F-9)

—atil

The radius o now appears only in the limit L of the integral, and the
integrand has a saddle point at z=0.
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The straight line contour for (F-9) can be deformed into contour C,
depicted in figure F-2, which goes through the saddle point at z=0. Now if

’WtiL _ iL - il
| )
'
i
| f
—plan i
2 Y e ! o i
| {
{ {
P L
P | O ar

Figure F-2. Equivalent Contours for (F-9)
p—>0+, then L>+=, and (F-9) yields

nt+ico

Io = (Zx)”2 S dz exp[i §-+ %— exp(-iz)] . (F-10)

-ﬂ"‘]. a0

where the contour is the limit of C in figure F-2 as L-»+a; that is, the
integral is between the two valleys at #r+iw and is connected by the saddle
point at z=0.

The steepest descent curves out of the saddle point of the integrand of
(F-10) are given explicitly by

y = -in(f‘-ig-—’i) for -n < x < =% . (F-11)

Thus if we let

y ——
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z=x+1y=x-11n(smx .
g-i-=l-i (B=x-2, (F-12)

on the steepest descent curves in (F-10), there follows
n
. | 1 in .
Io = (Z’A)ll2 gdx(l - i %‘13-3—} + i -—) exp[ g—«‘ g,Qn(é-—x—-’i +%§T:(T'i' exp(-—xxﬂ =
-

LS

. 1/2
1/2 . COS X 1\ /sin x X COS X
= (21) de(l -igEx i -)-(—) (————x ) exp[?——-——-sm x]::

-

L

1/2
- (20)}/2 5dx (5"‘ ") exp(2 cos Xy . (2012 202012 L an)12 . (Fa13)
5

(The integral value of (21:)1/2 in (F-13) was deduced by numerical integration.)

Recalling the definition of Ia in (F-7), we then have the dubious
result for the limit of (F-5):

1/2 2
414 R S i _
c(0) = (w) o) 7 exp( ) ), (F-14)

where we employed (102) and (F-6). Actual numerical evaluation of (F-14),
combined with V(0) from (F-3), gives incorrect results for the exceedance
distribution function (F-1); thus the replacement of o with 0 in (F-5) is
invalid. The explanation for this pitfall is the essential singularity of
(F-1) at B = -i/w; a simpler illustration fcllows.
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RESIDUE OF ESSENTIAL SINGULARITY

The function

N|+—=

exp(%) =1+=+ — ... (F-15)

has an essential singularity at z=0, with residue 1, as exemplified by this
Laurent expansion. Now consider the function

f(z) = exp(d) g(2) , (F-16)

where g(z) is analytic at z=0. Then

f(z) - (1 +1 2—1-5 . ...>(g(0) + qM(0) z + 3g!P(0) 2 + ) . (F-17)

oz

The coefficient of 1/z in (F-17) is the residue of f(z) at z=0; namely

& (n)
Res = g(0) + ,211- a‘1(0) +%—r%r {2 0) + ... - zg-.-(%‘f-}-r . (F-18)
n=0

Thus the residue of f(z) at z=0 depends on the behavior of g(z) in a
neighborhood of z=0, and not just the value g(0).

A couple of examples yield the following:

’

a(z) = (l-az)_1 , Res = EiEgél:l .

11(2a)
a

g(z) = exp(azz) , Res = . (F-19)

F-6
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CORRECT APPROACH FOR C(p)

/ Reconsider the integral in {(F-5) plus the scale factor 91/2; making the
substitution z = e+il, where L is given in (F-8), there follows for this quantity

i L _1
. (21)1/2 g dz (1-20x e'2)7! (1 - %é;”% e'?) *
—nHiL
* exp[i %... %— e"iZ + 2au eiz] . (F-20)

The uppermost singularity of the integrand in the z-plane (within the -x, «

strip) is a pole at zp = i fn(20r); however, the straight line contour in

(F-20) remains above this pole because o < 1/w; see (F-8). Furthermore, the
4 total integrand of (F-20) has a saddle point on the imaginary axis of the
z-plane above the pole location 2,, because the integrand is infinite at the
pole and at z = 0 +i®, Thus the straight line contour in (F-20) can be
modified so as to pass through the saddle point, and yet remain above 25
Finally, letting p-»0+, then L->+e  and (F-20) combined with (F~5) yields the
exact result for the circular component

ntico

2 R |
(o) = - exp(— U+r> j dz (1-2ur e'%) =+
T o172 . o

_"" i@

.\-1/2 : .
(- bt e

. where the two valleys of the integrand at #x+iw are joined with a contour
{‘ through the saddle point lying above the pole at 2, = i An(2wr). Here

b

|

)

|

w = 1+2R.
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1
The other component of the exceedance distribution function,
corresponding to (F-21), is given by (F-3) at o = 0+: ‘\
1/2 i
V(0) = E'ET' exp ( u+r) f 1+t *
0
-1/2 2 "
*(1"‘w"‘t2) exp(— Uy _ E——Z-) . (F-22)
@ wt

Thus for u > 0, (F-1) and figure F-1 yield exceedance distribution function

1- Ph(u) = C(0) + ¥(0) = (F-21) + (F-22) . (F-23)

Computationally, (F-21) is not too attractive, because of the complex
integrand and/or the need to determine the steepest descent paths to #w+ijeo
numerically. Accordingly, an alternative direct procedure for determining the
exceedance distribution function of random variable h is now presented.

DIRECT EVALUATION OF EXCEEDANCE DISTRIBUTION FUNCTION

For y=0, N=1, (12) and (3) yield the crosscorrelator output for the
signal and noise model as

= [u, (1) + uy(1)] [u, * vg(1) + vy(1)] . (F-24)

L
[

The normalized crosscorrelator outphut is then, from (49) and (97),

h = = (ru + u; + ué) (rv +yv! o+ v&) = xy , (F-25)

172 S
(0,0,)

where x and y are joint Gaussian random variables with statistics

F-8




2 el Ry, o=l R, (xR =0 ®RRYZ.

We now make the same assumptions as in (99); see also (56) et seq.
(F-26) specializes to

- - 2 2 2 R
X=ay=r, ux=0y=1+R! o pxyzﬁ.

The joint probability density function of x, y is then given by

...1 2 2
1/2 (x=r)® + (y-r)° - 20 (x-r)(y-r)
Po{x,y) = {Zn 2(1- 2 ] exp |- Xy

We now have cumulative distribution function

Ph(u) = g}* dx dy pz(x,y) foru<O,

R2+R4

and exceedance distribution function

1 - Ph(u) = Sf dx dy pz(x,y) foru >0,

where regions Ris Ros Ry, Ry are indicated in figure F-3.
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(F~26)

Then

(F-27)

(F-28)

(F-29)

(F-30)

F-9
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Figure F-3. Regions of Integration

If we now rotate axes according to

+ -
s, - (F-31)

and employ (84) and (F-27), there follows (after scale changes of the
variables)

400
Ph(u) = 2 f dv ¢(v - r(2/m)1/2) @(-(mvz-Zu)lla foru<oO, (F-32)

—Cb

and

T L Vars? )
1-P(u) = 2de ¢(v)[§( ury /2) $[—— L/‘“’ /2 }ror u>0. (F-33)
0 m

Here w = 1+2R. These real integrals are very useful for the evaluation of the
distributions of h when y=0, N=1. In fact, {F-33) is preferred over
(F-21)-(F-23); but (106) is preferred over (F-32) since ¢ need not be
evaluated in (106). This is in fact the procedure utilized here to obtain

numerical results for this case of y=0, N=1.

F-10
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APPENDIX G. PROGRAM FOR EVALUATION OF OPERATING CHARACTERISTICS FOR y=0

The comments in appendices C and D are relevant here also., The
characteristic function used as the starting point is given by (100). It was
observed under (103) that [fh(;), for (100) is monotonically decreasing for
all ¥ > 0; thus the choice of truncation value L is simplified; see appendix D
cooments. A table for sampling increment b, (when R=0) follows.

N s, for r=l b, for rs2
3 .07 .05
4 .07 .05
8 .05 .03
16 .04 .02
32 .03 .02
64 .025 015
128 .020 .010
256 .012 .007
Table G-1. Values of 4, for y=0
19 ' GAMMA = @8 HO SAMPLE MERH REMOVAL
2a He=22 ' N, Humber of terms addsd
39 Rz=1 ' r, Normalized mean
48 Deltr aB=,03 ' Initial delta
50 Es=2#PI1-Deltan=.375 ! Bias b (depend: on r?
60 Mf=2~113 b Size of FFT
70 OUTFUT @;"GRMMA = g ;" M o="jNc;" r =";Rs
2@ QUTFUT 95"
90 DATA -4,-3,-2.5%,-2,-1.5,~1,-.9,8,.5,1,1.5,2
1008 READ Mz<#> I SHR R=2"n

118 OUTPUT Q3 Hs(*);

129 DATA 1,2,2,2,2,2,2,2,2,%4,4,4,8

1309 READ Ideltaix)

140 MAT Delra=(leltabd ~Idelta

150 OUTFUT B;Deltac*);

168 IATA 1E-18,1E-9,1E-3,1E~-7,1E-6,1E-5,1E-4,.001,.01,.1,.5,.9,.93,,993
170 READ Sci%>

180 DIM He<1:125,1delvacdi12),Deltal@:12),5c¢1214)
199 DIM X<{B:i3191>,Y:0:5191>

200 FOR I=t T0O 14

210 SclI)=FHInvphi<Sc(l)

226 NEXT 1

G-1
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230 S=Scil

249 B=Sc {14

=250 Scale=(R-So 08-5)
260 ®1=38

27a ®ne=ive

288 Yi=3%

290 Y2sYl+0H2-K1i2%5cale
04 FLOTTEFR >
318 LIMIT =

324 QUTPUT

338 SCARLE 5,

348 FOF I=1

350 MOVE S,

358 DRAW B,

378 MEXT 1

c3=1:] FOR I=1 TO 11
390 MOVE Scdl3, s

409 DRAW Sccll,B

41@ NEXT 1

3120 MOVE 5,5

430 DRRAN 0,8

440 PEMUF

458 Mi=HMf-1

459 N2=Nc -2

470 Ren=Nc#Rz %Rz I H re2
4508 FOR In=g TQO 12

498 IF In>a THEM Sz2@

S0 Rc=0

510 GOTOD S8

Sz6 Re=z~Hzd(In? I SNR R=2"n

534 QUTPUT @;"R =";Fc," Delta =";Deltallin

540 ASSIGH #1 TO "AREBICISY ! Temporary storage

558 Delta=Deltadlng t for falzes alarm probability

Sc@ R2=Rc%2

570 R2i=Rz+1

520 Mux=Hc 2Rz +Rzn I Mean of ranmdom wvariable h
590 Muy=Mux+Es I Mean of shifred variable y
€09 REDIM H(@B:Mi>,r(BiM1>

(3% MAT X=2ER

620 MAT Y=2ER

630 X(asr=a

€40 Y@ =,5xDelta*luy

£54a Ls=9

668 Le=Ls+1

&7a Ai=Deltasls ! Argument xi of char. fn.

650 Ei=Hi*p2t I Calculation
630 CALL Log(i+Xi+*Ei,-Hi*R2,R1,Bi) i of

vaa CALL DiwiB,Xi*Rsn,1,-Ei,Ci,Di2 t characteristig
710 CALL ExprCi-NZ#Ai,Di+Xi%*Bs~-N2#Bi,Fyr,Fyid | function

720 Ms=Ls MOD MFf I fydxid

739 Rr=Fyr-Ls

749 Ai=Fyi-Ls

759 WMz =Y ME ) +Rr

760 YiMs =¥ Mz 2+A]

s Magzq=HAr*Ar+Ai *H[1

-1 IF Magzq>»1E-24 THEHW 660

728 DUTPUT @;"¥r =";4Ri;" Mag =";SQR(Magsq>
8048 CALL FfLI3zC(Mf Y(*),( (%))
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210 FOR Ms=0 10 Mt

828 T=¥YMs " FPI-Ms M§

2328 K{Msr=,5-T ! Cumulative diztribution functiocn
24n TiMz =, 5+ T I Excegdance distribution function
2859 HENT M=

358 QUTPUT aiv@asyalagyCml- v <n1)
878 PLOTTER IS “GRARFHICS®H

839 GRAPHICS

399 SCALE @, My, -14,8

J08 LINE TYPE 3

9190  GRID Mf-8,1

928 FENUFP

938 LIHE TYPE 1

948 FOR Ms=0 TO M1

958 Pr=1"{Ms7

968 IF Pr>=1E-12 THEN Y=LGT{(Pr:>

=) IF Pri=-1E-12 THEN ¥=-24-<LGT{(~-Pr>
984 IF ABSiFr»<1E~-12 THEM ¥=-12

99a PLOT Ms,¥

1988 HEXT Ms

1818 PEHUF

18928 FOR Msz=08 TO M1

16028 Pr=xX:iMs>?

1648 IF Pr>=1E~-12 THEHN Y=LGT(Pr>

1858 IF Pri=-1E-12 THEHN ¥Y=-24-LGT(-Pr
1960 IF RES‘PrY<¢1E~12 THEH v=-12

1678 PLOT M=z,

1988 HEXT Ms

1698 PEHMUP

1166 DUMF GRAFHICS

11186 OUTFUT By;"*

11286 IF In:9® THEH (270

11386 FOR Msz=8 TO M1

1148 IF Y{Mz»<.? THEN 1169

1159 NEXT M=z

1160 Mz=Ms-1

{1786 FOR Ms=#M2 TC M1

1188 IF vY(Ms)»<=¢@ THEN 12080

1190 NEXT M=

12868 M3=Mz-1

1219 REDIM X< M2:M3>

1228 FOR Ms=H2 TO M3

1239 X(Ms =FNInugphi (Y{(Ms)>>

1248 NEXT M=z

1298 PRINT #1;4(% I Store false alarm probability
1260 GOTO 1466

1270 REDIM KiM2iM3»

1280 RERD #1;X(*) ! Read in falze alarm probability
1290 ld=Idelrailn:

1308 J2=INT(M2-1d>

1318 J3=INT(M3-/Id>+1

1326 FOR J=J2 TO 13

1338 YCIr=FHInvphi{N(Sin

1348 MEXT J

6-3
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1358 PLOTTER I35 “3372R"
1368 LIMIT ¥1,%2,Y1,¥2
1378 OUTPUT 7a5;"ysae
13¢@ SCALE 5,8,S,B

1398 FOR J=J2 TO J3
1408 T=J#Id

1410 IF T<i2 THEN 1449
1420 IF T>M3 THEN 1450
1438 PLOT X<T)Y,¥(J)
1448  NEXT J

1458 PENUF
1460 HEXT In
1478 END
1486 !

1490 SUB Diwixl,v1,N2,¥2,R,B)
1548 !
1S58 SUB Expii,¥,A,B)

1660 !

1618 SUB LogiXx,Y,A, R

1699 !

1789 DEF FNInuphi ok

1838 !

1848 -uf FFel13ziMN,Kisd,¥Y{%))

G-4

!

.

L4

I DIVCID
I EXPC2D ‘
! PRINCIPAL LOG(2Z>

INVPHI(X> via AMS S5, 26.2.23

1
1
i

v
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Under-Ice Roughness:
Shot Noise Model

A. H. Nuttall
ABSTRACT

The one-dimensional roughness of an under-ice profile of elliptical
bosses is modeled in the time domain by a shot-noise process of ellip-
tical pulses of random amplitude, duration, and time of occurrence. A
sample rcalization of 8000 data points is generated and plotted for
visual comparison with experimental under-ice data. Aiso, theoretical
and simulation results for the power density spectrum, the auto-
correlation function, the characteristic function, the cumulative
distribution function, and the probability density function of the shot-
noise process are plotted and compared.

Approved for public release; distribution unlimited.
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INTRODUCTION

The under-ice profile has been observed to appear like a random
collection of superposed elliptical bosses, each of random amplitude, length,
and location. An analogous model in the time domain is shot noise composed of
overlapping pulses of random amplitude, duration, and time of occurrence.
Accordingly, we have generated a sample realization of a shot noise process
for visual comparison with experimental under-ice data, and for possible
corroboration of this model. The particular realization generated has 8000
data points, although the number of effectively-independent samples is far

fewer, as will be demonstrated.

A number of analytical results for shot noise have been derived in the
past [1]; however, they did not cover the case of random duration modulation.
We have extended the analyses to include random durations (as well as random
amplitudes and random time occurrences) and evaluated the spectrum of the shot
noise process, as well as the autocorrelation function and the first-order
characteristic function of the instantaneous amplituue. From the latter, the
first-order probability density function and cumulative distribution function
of shot noise have been evaluated via a generalized Laguerre expansion
employing 32 cumulants or moments. Comparisons of all these theoretical
results with the corresponding sample quantities, obtained from the 8000 data

point realization above, reveal excellent agreement.




]
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A REALIZATION OF A SHOT-NOISE PROCESS

Shot noise is characterized by a superposition of pulses, each located

independently and uniformly on the time scale. A sample pulse is illustrated

in figure 1. The time of occurrence tk (center of symmetrical pulse, for

skap& F

‘ﬁ(& -ék tﬁ’ex t

Figure 1. Sample Pulse of Shot Noise

example) is uniformly distributed in time t, with an average number of pulses
per second, v. The amplitude a and half-duration lk of an individual

pulse are also all independent and are each identically randomly-distributed

with arbitrary probability density functions. Finally the fundamental pulse

shape F in figure 1 is arbitrary.

A realization of shot noise is given by

bt
1(t) =¥ a, F(—k—k—k—) , (1)

where the summation extends over all k. The particular data we ygenerate here

employs the following example; unscaled pulse shape F is circular:

<i-x€f;or ] <1
F(X) = . (2)
0 for |x[ >1




™ No. 841208
This pulse is continuous; however, it has cusps (infinite slope) at x = #].
The reason for this selection will become apparent when we discuss the

spectrum of shot noise process (1).

The amplitude probability density function for random variable a is

Rayleigh,

Oq Zaa

2
p(a) = = exp %)U(a) , (3)

and the duration probability density function for random variable,lk is also

Rayleigh,
2
pU) =%exp -‘% uel) . (4)
2
% %
Here, step function
1 forx >0 '
U(x) = . (5)
0for x <O

The mean values of random variables ay and fy are given respectively by

\ %

Te 5 s Boar TT= (B ®)

in terms of the parameters 9, and 9% of probability density functions

(3) and (4). Alternatively, the mean square values are given by

"~

=¥=20§, F=/{k7‘—'20"e2~ (7)

Three typical component pulses are depicted in figure 2, and can range

from circular through various elongated elliptical shapes. The total length

of an individual pulse is Lk = Zlk. An important parameter of this time-
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Q. e)l{r‘kital
?ubts

tn,  t By, {1

Figure 2. Three Component Pulses

limited pulse shape in figures 1 and 2 is the (dimensionless) overlap factor

L_kv = Zl-kv =2 (5—)01\) . (8)

This is the average number of pulses that are overlapping at any one instant
of time, and is a partial measure of the applicability of the central limit
theorem. A more meaningful measure are the cumulantis, Tour probability density

function (3) and pulse shape (2), the normalized third and fourth cumulants are

1.017 1.2
T NLT? and s (9)
&) / Koy

respectively. In the sample realization generated here, the overlap factor in
(8) was 6.2, leading to normalized cumulant values in (9) of .58 and .39,
respectively. Since a Gaussian probability density function would lead to
zero cumulants above second-order, the shot noise realization dealt with here

is distinctly non-Gaussian.
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In the three parts of figure 3, a realization of shot noise model (1) is

given for parameter values

0, = 1 sec, % = 20 sec, v = .124 pulses/sec. (10)

The waveform (1) is sampled at unit time increments and connected by straight
lines; thus the initial 100 data points illustrated in figure 3A have a jagged
appearance for those component pulses with small lk’ as for example at time
instants 67-68. The larger duration pulses, like the one centered at t = 29,

have a smoother appearance.

In figure 3B, the initial 1000 data points illustrate the very erratic
character of shot noise; the waveform consists of some very sharp spiky pulses
and other broader smooth components. The appearance of a downward trend in
these 1000 data points is erased when the entire 8000 data point sequence is
viewed in figure 3C. The possibility of shot noise process (1) reaching a
zero value (when no pulses overlap) is confirmed by the waveform values near

t = 6400.
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CORRELATION AND SPECTRUM OF SHOT NOISE PROCESS

The derivations of the correlation and spectrum of the shot noise process
(1) are given in appendix A; from (A-12), we have, in general, the correlation

function at delay T,

Rp(T) = v ?fdlz PUIR $(TiR) + 15, (11)

where the dc component of I(t) is, from (A-13),

Idc =valf fdx F(x) , (12)
and

by) = fdx F(x) F(x-y) (13)

js the (aperiodic) correlation of an individual pulse F. (All integrals are

over the range of non-zero integrand.)

Also, from {A-16), the general spectrum of process I(t) is, at frequency

6y (F) = v [ o) 22 [sun|2+ B 56, )

where
S(f) = 5dx exp(-i2xfx) F(x) (15)

is the voltage density spectrum (Fourier transform) of pulse F. Thus

lS(f)lz is the energy density spectrum corresponding to pulse F.

13
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It should be observed that the entire probability density function p(f) J
of half-duration random variable 1; is required in order to evaluate the
correlation or spectrum of shot noise. However, only the first two moments, a
2

and a“, are required known about probability density function p(a) of o

amplitude random variable a,. The only way that the dc term I,  can be
k dc

zero is if random variable ay has zero mean (a = 0), or if pulse F has zero 1
*

area (S(0) = 0). _1

Example r

The example of interest here was given earlier in (2) and (4), namely a
circular pulse F and a Rayleigh probability density function for random
variable kk' The spectrum 6;(f) in (14) is evaluated in (A-17) through
(A-22), with the results

J; (2xf) .
(f) =""27"‘s 5(0) =7’

N2

Tge = (? vag o

2 exp(-z) I,(z) 3 2
o —r——+ () L3

with z = (21r<i f)z. (16)

The asymptotic behavior of spectrum (16) is [2, eq. 9.7.1]

va -3
GI(f)N -—Tf as f~P+e0, (17)
(2n) %

14
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That is, the spectrum decays at a -30 dB/decade rate at large frequencies;
this is due to the square root singularities at x = %=1 of pulse F given in
(2). This decay rate has been observed in some spectral analyses of under-ice
profiles, and was one of the reasons for choosing the specific circular pulse

in (2) for this investigation.

The spectrum in (16) is plotted in figure 4, for the choice of parameters
earlier in (10), as a dashed line, normalized to 0 dB at f = 0. Superposed is
a linear-predictive spectral analysis result with predictive order 10, for the
8000 data points of figure 3C. The two results are in excellent agreement,
even at the -50 dB level, with the inevitable 3 dB aliasing effect at the

Nyquist frequency, as indicated.

The correlation RI(I) in (11) is evaluated in (A-23) through (A-33),
for the example (2) and (4), with the result

RI('C) = %(Zn)yz v ;73! s exp(-s) [(1+4s) Kl(s) - (3+4s) Ko(s)] +
3 2 2
+ (—;—) v2 a 02, with s = (aii-—-) . (18)

This quantity, exclusive of the Igc term, and normalized at the origin, is
plotted in figure 5 as a dashed line, for delays (lags) T up to 100. It is
seen to decay monotonically to zero as T increases, and reach its l/e value at

approximately T= 30.

15
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The remaining solid curve on figure 5 is the normalized sample
autocorrelation function of the 8000 data point sequence in figure 3C, where
the sample mean was subtracted from the given data. The agreement with
theoretical result (18) is excellent. The dotted horizontal lines at #2¢ in
figure 5 are the #2 sigma values of the correlation estimate at delays where
the true correlation is presumed zero; the details of this analysis are given

in appendix B.

This procedure is duplicated in figure 6, where the correlation function
estimate out to lag T= 1000 is plotted. The drifting of the estimate outside
the #2¢ limits (at T= 470 and 820) is consistent with an occasional excursion
of a random variable outside its #2¢ range. The correlation estimate (used

for figures 5 and 6) at time separation k is

1
R, =& X X for k > 0, (19)
K N =k +1 n “nk =

N
where {x;bfs the available data in figure 3C, with its sample mean removed.

16
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AMPLITUDE STATISTICS OF SHOT NOISE

The first-order characteristic function of shot noise process I(t) is

derived in appendix C; it is given by (C-9) as

F1(5) = e [v T [ax {7 7 (0)]-1}] (20)

Here fa is the first-order charactaristic function of ampiitude random
variable a . Observe that the probability density function p(Q) of
duration lk is irrelevant to characteristic function fI, except for its
mean §; this is in contrast to the spectrum and correlation results in (11)

and (14), where p(a) was irrelevant except for parameters 2 and a2. (For

& =1 for all k, (20) reduces to a simplified version of [1, eq. ..5-4].)

The characteristic function of the amplitude random variable a, can be

expanded in terms of its moments

uy(n) = a - jda a" p(a) forn>0, (21)
according to
o0
F(5) = = w09 (22)

This result is useful if the fn of (20) is expanded in a series in §; namely
An fI(;‘) = vzni;l ua(n)(i;)" de F"(x)/n! , (23)
giving immediately the cumulants of I(t) as
An) =v] ua(n)jdx F'(x) forn>1. (24)

20
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That is, the n-th cumulant of I(t) is proportional to the n-th moment of
random variable a as well as the n-th "moment" of pulse F. (For i& =1

for all k, (24) reduces to [1, eq. 1.5-2].)

The normalized cumulant of I(t) is

X% (n) 1 uy(n) fdx FM(x)
SN N "
@)1 (B E‘am { ax cmxﬂ &

In particular, the coefficients of skewness and excess [3, pp. 184 and 187]

. (25)

YI(n) =

are
3) {dx F3x)
Y1(3) - 1‘/’ Ya J - % (26)
) Ea(z) fdx F (xg
and
u.(4) | dx F4(x)
y4) = —4— 2 | (27)

v I Ea(Z) 5dx Fz(xﬂT

These quantities are very important measures of the approach of I(t) %o a
Gaussian process; if vR is very large, the normalized cumulants yI(n) are

all substantially zero for n > 3, meaning that I(t) is nearly Gaussian. Thus
although probability density function p(f) is not directly relevant to the
probability density function or characteristic function (20) of I(t), the
exact probability density function of I(t) is critically dependent on the
mean { through the dimensionless parameter vR. More precisely, (26) and (27)

are the critical quantities; see also [1, eq. 1.6-3].

21
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If either the third moment of random variable a, is zero, or if the
third moment of pulse F is zero, then 71(3) = 0. In that case, 71(4) is
the most important statistic measuring the applicability of the central limit
theorem; 71(4) can never be zero for shot noise, since neither the fourth
moment of random variable a or pulse F can be zero (except in a trivial

case).

The first moment of shot noise I(t) is the mean

lye = TTET = %1 = v X 3 [x F(x) (28)

and has already been encountered in (12). It can be zero only if the first

moment of random variable a, or of pulse F is zero.
Example

Numerous cases have been considered in appendix C; in the main body here,

we 1imit attention to example (2) and (3) presented earlier. We find

n
uy(n) = 2?["(%+ 1) og forn >0,

e

2n+l 2 fn 1
de F(x) = l;(n(g) ) forn >0. (29)

Then (26) and (27) yield result (9) quoted earlier.
The realization of shot noise process I(t) in figure 3C employed the

parameters in (10). The sample cumulative distribution function of these 8000

data points is depicted in figure 7, on a normal probability ordinate; thus a

22
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truly Gaussian random variable would have the straight line character
indicated. The significant deviation of the sample cumulative distribution
function from the Gaussian line is due to the small value of the overlap

factor in (8), namely

The moments in (29) are all positive and are easily numerically evaluated
via recursion; hence the cumulants in (24) can be accurately evaluated for
high-order n. When these cumulants are employed in a generalizec Laguerre
expansion of the cumulative distribution function of I(t), using 32 moments of
(29), the solid curve in figure 8 is obtained. The sample cumulative
distribution function of figure 7 is duplicated here, although the abscissa is
scaled differently. The agreement between theory and experiment in figure 8
is excellent, considering the fact that we only have about 8000/30 = 270
effectively independent samples of I(t) in figure 3C; the denominator factor
of 30 here is the effective correlation duration, previously identified in

figure 5 at the 1/e point.

Finally, when the same 32 moments are used in a generalized Laguerre
expansion of the probability density function of I(t), the result in figure 9
is obtained. The small bump near the origin is real and accurate; it and the
non-symmetric tails of the probability density function confirm the distinctly
non-Gaussian character of I(t). The method for the determination of the
cumulative distribution function and probability density function in figures 8
and 9 will be presented in a NUSC Technical Report [4] by the author; the
programs are listed here in appendix D, along with an example of the sequence

of Laguerre coefficients.

23
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APPENDIX A. DERIVATION OF SPECTRUM AND CORRELATION

The method employed below follows that given by Rice [1, sections 1.4 and
1.5] rather closely. We generalize [1, eq. 1.3-1] to the current form

introduced in (1):

K
IL(t) = > a F(t-tk> , (A-1)
K ka1 ¢ VA&,

where {ag}, {té}, gl;} are all independent random variables. K is the
presumed number of pulses to occur in a large time interval T, and a, is a
random amplitude as in [1, eq. 1.5-1]; but random duration,fk is new. Then

product

k=1 A/

FORRE r>-§ ('t“\ ("Mﬂ

+k§: EK_ 2, F(t t"\ (-t-t). (A-2)

R
k#m k/

Holding random variables {ag} and i&kS fixed for now, the statistical

average of (A-2) over {tk} is

‘%as $dt F(k-:k) (t H)

k=1
K K
t-t t-pt\
SR NNIPR I
k=l m= T kI Ty ’("‘/
kﬂn

K
= LS 2 sam)+ L E E a ap A & S2(0) , (A-3)
k=1 k=l m=l
k¥m

27
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where T is an arbitrary large (but finite) time interval, and

$() = {dx F(x) F(x-y) (A4)
is the aperiodic autocorrelation of pulse F, while

S(f) = jdx exp(-i2afx) F(x) (A-5)
is the voltage density spectrum of F.

The remaining averages over independent random variables {ak} and

Zﬂg& in (A-3) now yield

Led? {agpug o) + 7 (K EESOF, (8)

where p(f) is the probability density function of random variable l.

Now K is itself a random variable, with discrete probability

(in an interval T) of [1, eq. 1.1-3]

K
LX%%—-&XD(-vT) for K =0,1, 2, «v. . (A-7)

There then follows the characteristic function of random variable K as

fe(5) = exp (sTlexp(ig) - 11), (A-8)
with series expansion
o
D fe &) = oT [exp(if)-1] = T 2 ()" . (A-9)
n=1

Thus the cumulants of random variable K are all equal,

Xg(n) =vT forn>1, (A-10)
giving in particular the first two moments

K =T, F =vI(vT +1) . (A-11)
28
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The use of (A-11), to perform the remaining average of (A-6) with respect

to random variable K, then yields the correlation function of the shot noise

process I(t):

RI(T) = v a? jdﬁ PR $(T/R) * [v T F S(0)1°.

The dc component of I(t) is
Idc =va)S(0)=yv 'a"[jdx F(x) .

The spectrum of I(t) is the Fourier transform of (A-12):

y() = v o7 [ o @) A2 ) + 1 SR
where

$(f) = v(cn: exp(~i2+FT) P(T) =

= jdt exp(-i2xfT) de F(x) F(x-T) = )S(f)lz.

by use of (A-4) and (A-5). Thus (A-14) can be expressed as

6,() = v o [ ap o) R2 fsae)] 2 + 12 §0)

ﬁ(f)‘z is the energy density spectrum of pulse F.
Example
The example of interest here is given in (2) and (4):

‘A
@Jafw x| <1
0 for [x| >1

p(R) = J%exp(i;) uie) .

% 22&

F(x) =

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)

29
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Then from (A-5) and {5, eq. 3.752 2],

1 % J, (2nf)
S(f) = 5\ dx exp(-i2«fx) (l-x - —r— . (A-18)

Substitution of (A-17) and (A-18) in the integral in (A-16) yields, by use of

[5, eq. 6.633 2],

2\ I(2«f) 2 exp(-z) 1,(z)
X(u -% exp(:&i) —I—T = szolz 7 1 , (A-19)
2& 4f

where
z = (waf)z. (A-20)
Then the spectrum (A-16) is given by

—_ 2 exp(-z) 1,(z)
6,(f) = 212 v a2 F —L 2 §(F),  (a-21)

where

)3/=_

Iyc=v a2 s = (% vag, (A-22)
by means of (A-13), (A-18), and (6).

To determine the correlation of shot noise process I(t), we consider
first the continuous portion of the spectrum in (A-21):
- , 2 exp(-4elqif?) 1 (4n%eZt%)

2
G (f) =2% v a g
c 2 AR

. (A-23)
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The corresponding correlation is
+o
RC(L’) = fdf exp(i2«fT) Gc(f) -
-0
o T 3 P exp(-4w2$2f2) Il (4w2<112f2]
=47 v a o df 2 cos(2sfT) =
R 4420 2f2
o 74
-5 exp(-z) I,(2)
=2rvalg rdz cos(;-s z’? - 177
'( 0 /Q Z
JA —
=Zmyal q exp(-s) N_%,%(Zs) , (A-24)

where we employed (A-20) and [5, eq. 6.755 2], and defined

2
s = L) ) (A-25)
(%

The W-function in (A-24) is the Whittaker function [2, p. 505].

Now by [5, eqs. 9.232 1 and 9.222 1], we have

_sh
(2s) = %%7'—3-} ?dt exp(-2st) t1* (1+t) =

W3 1) =¥3 1
2° 2 2° 72 0
2 1 1
= -£ exp(-s) fdt exp(-2st) 7 - . (A-26)
Y A ’ §h
™ *(14t) t”(1+t)

But according ty [5, eq. 3.364 3],

Tdt ng_gj:_Z_s_E)_ = exp(as) I(O(as) . (A-27)
Ya Ya
0 t (at+t)

3l
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partial differention with respect to a then yields

o0
- %— ) dt %si:—zs)—;-sl = s exp(as) [Ko(as) - Kl(as)] (A-28)
t {a+t

and (repeated)

o0

. K, (as)

% )‘ dt e’;z "ZSt’ = s exp(as) [ZKo(as) - 2K (as) + las ] (A-29)
0 t (att)

Here we used [2, eq. 9.6.28] in the forms

: : K (2) 1
Ko(z) = - Kl(z), Kl(z) = - Ko(z) - (A-30)

If we now set a = 1 in (A-28) and (A-29), and then employ these results

in (A-26), we obtain J

w-%’ %(25) = 17_27;%5 [(1"‘45)'(1(5) - (3-!-45)](0(5)]. (A-31)

Finally, the use of (A-31) in (A-24) yields

Rc(‘t) = g(Zw)va v ;?ci s exp(-s) (1+4s)K1(s) - (3+4s)K0(s)-J. (A-32)

The Fourier transform of the impulsive part of the spectrum in (A-21) is simply
the constant

3 2
2 " 2 — 2
Idc = (2‘) v a 9 > (A-33)

which must be added to Rc(T) in (A-32) to obtain Ry(T). Here s is given by
(A-25).
As To» 0+, there follows from (A-32),

. 8, A 7
T:l-"ll&Rc('C) = -3-(2:) v a :JE . (A-34)
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APPENDIX B. VARIANCE OF CORRELATION ESTIMATE

Let the available data be {}é}", with zero mean and variance 02:
1

X =0, x =g¢ for 1 <n<N. (B-1)

The autocorrelation estimate at delay k is defined here as

naéh Xy Xy fork >0. (B-2)

At delay 0, the mean value of estimate Ro is

Z{r

Rk =

N

xﬁ - (B-3)

:D
ll

n=1

We now want to evaluate the standard deviation of estimate Rk at delays

k large enough that Xn and X,k are statistically independent. We have

mean value
=
— 1 - -
R, == X X =0, (8—4)
k N nek+l n “n-k

using the independence at separation k. The mean square value of estimate
R is
N

1
7 iy Tk (8-5)
’

i

For the large separation values k of interest here, the only statistical

dependence that contributes non-trivially to the double sum is the following:
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N

4
1 2
-z 24 Xn *n Xni *ni = i_z.m,n§=k+1 oS (m-n) =
4
iz.— E (Nk-Jn]) o2(n)S 2 (Nk) > o2(n) . (8-6)
‘ n

Here p is the correlation coefficient of data {x&}, and we have assumed that
N is moderately larger than the effective correlation length of 5. The ratio
of the standard deviation of estimate Rk to the mean value at k=0 is then

the normalized standard deviation at separation k:

. \/;
o) & %@I-k) % pz(n):] ] (B-7)

N
Notice that no Gaussian assumptions on data fx } have been employed in this

analysis; however, p(k) is essentially zero at the k values of interest.

As an example, for an exponential ccrrelation of effective length Ke,

there follows

2 pz(n) = 2 exp <—2Km->5 fdx exp (-2%‘1—> = Ke , (B-8)
n e e

n

where we assume that Ko is moderately laryer than unity. Then (B-7) yields
v 1 A
o T FLINKIK T (8-9)

These results hold only for those values of k where p(k) has substantially
gone to zero. Larger values of Ke lead to larger relative standard

deviations; this is consistent with the fact that there are then a lesser

number of effectively-independent samples in the Timited data set of length N.
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For the 8000 data pcint example of interest here, inspection of figure 5

reveals that Ke§ 30. Thus
| 8

120} = + _73%&‘800 . (8-10)

These confidence 1imits are superposed as dotted lines on figures 5 and 6.
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APPENDIX C. PROPERTIES OF CHARACTERISTIC FUNCTION OF SHOT NOISE

Derivation of Characteristic Function

The method of derivation of the characteristic function of I(t) presented
here parallels that of Rice [1, sections 1.4 and 1.5] very closely. We

generalize [1, eq. 1.3-1] to

K et
I (t) = E a, F T (C-1)

k=l

where {ak}, ftk}, {,{k} are all independent random variables; see (A-1)
and the ensuing discussion. The characteristic function of an individual

component in (C-1) is

f,(g) = exp ;ak ( )] (C-2)

where the statistical average is over a 'ck ”Qk . The average over

tk (for fixed s ,{k) is, for T a large but finite time interval

(1, p. 152],
T . t-tk
le dt, expEfak F _/Qk_-]=
0

;L . t-t
-3 ; dtk{exP E?ak F(& )]-1} +1=

= %.Jdr{expﬁsak F(ﬂ-} +1, (c-3)
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for large T, where we have used the fact that
F(x)— 0 as x—» #%o0, (C-4)
Let x = (t-‘rk)uk in (C-3) to get
%’Qk fdx{exp[ifak F(x)]-l} +1. (C-5)

Now performing the averages on randum variables ,Qk and 3, we have, for the

characteristic function of an individual component of (C-1),

fl(y) = 'II'I da p(a)fdx{exp[‘iga F(x)]-l} +1, (C-6)
where p(a) is the probability density function of random variable -

Interchanging integrals, (C-6) becomes

£,(8) = L7 fJafr frr 01} + 1, (c-7)

where fa is the characteristic function of amplitude a,. Then from (C-1),
since all the individual random variables are independent, the characteristic

function of IK(t) is

£ 8 = If 1" (c-8)

Finally, the characteristic function of total shot noise process (1) is, by

use of discrete probability distribution (A-7) for random variable K, given by

the average
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o0

K
() = E %-}-Lexp(-vT) fIK(f') =
K=0

expl -vT + T fl(;)] =

exp[vffdx{fa[g’F(x)]-I}] . (c-9)

The (imprecise) large time interval T has dropped out of the general
result (C-9). Also, the only parameter required about the duration random
variable Ik is its mean. The exact characteristic function f, of
amplitude a and the exact pulse shape F directly affect the characteristic
function of I(t). For kk =1 for all k, (C-9) reduces to a simplified
version of [1, eq. 1.5-4].

Cumulants of I(t)

The characteristic function of random amplitude a, can be expanded in a

power series

oQ . n
8 = S wmUEL, (c-10)
n=0
where ua(n) is the n-th moment of a:

ua(n) = ;ﬁ-= S‘da a" p(a) . (c-11)

Then from (C-9), we develop
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An f(E) = u,{fdx ff5F(x)]1} =
0o

o\
=vjf u,(n) ﬂﬁ—fdx ' (x) , (C-12)

N=]
allowing for immediate identification of the cumulants of I(t) as
’Xl(n) =v J pa(n) jdx FM(x) for n 3_1;}!1(0) =0 . (C-13)
For 'Qk = 1 for all k, this reduces to [1, eq. 1.5-2].
The normalized cumulants of I(t) are

(n) w, (n) Jdx F?(x)
vy(n) i 2 J (C-14)

Tl o [sa(@) fox FZ(xT |

These quantities tend to zero rapidly for v} >> 1; see also (1, eq. 1.6-3].

Thus \)1 has a prorounced effect on how Gaussian I(t) is.

Behavior of characteristic function FriF) at §= *o0

If pulse F(x) is non-zero only over(xl, xz),we have

X
2

jdx {fa[fF(x)]-l-} = XS dx Efa[;F(x)]—l_} . {C-15)
1

Now if random variable a, has a characteristic function fa with the property

that

f (@) = 0, {C-16)
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then

X
2

(C-15)— J dx {0-1} = ~(x, - x,) as §— 2%,  (C-17)
1

in which case (C-9) yields

(%) = exp[-vR(x, - x{)] . (c-18)

If pulse extent Xy = X is infinite, as for the Gaussian or exponential

pulses,

F(x) = exp(-x?) or exp(-x)U(x) , (C-19)
then (C-18) is zero. On the other hand, if Xy = X is finite, as for circular

pulse

(l-xzjsfor X <1
F(X) = s (C—ZO)
0 for [x] >1

then

fy{*) = exp[-vF2] > 0 for circular pulse. (C-21)
This non-zero characteristic function value corresponds to an impulse at the
origin of probability density function P» with area (C-21). Physically,

this means that there are occasionally regions of the t-scale where no pulses

overlap, and there I(t) = 0. The probability of this happening is, generally,

Py = Prob {1(t) = 0} = fi(2®) = exp[-vZ(x, - x))] . (C-22)
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On the other hand, for the Gaussian or exponential pulses cited in
(c-19), Xo ~ X = *&, and fl(tw) = 0, meaning that there is no impulse
at the origin of probability density function Pr- Physically, the infinite
tails (even if single-sided, as for the exponential pulse) disallow I(t) ever

from becoming zero.

Cumulants of Continuous Portion of p..

The impulse at the origin means that probability density function P

and cumulative distribution function PI can be expressed respectively as
pr(u) = B §(u) * pclu) ,

U
P (u) =P+ § dtp.(t) foru>so, (C-23)
I 0 0 ¢

where pc(u) is a continuous function of u, with area 1-P0. The

characteristic function relation corresponding to (C-23) is

fl(;) = PO + fc(Y) ’ (6'24)

and the moments are related according to

uI(O) - PO for n=0
“c(n) = . (C-25)

uI(n) for n>1
The cumulants of fc or p. can then be found from these moments (C-25), by
recursive relations; see [4] or [6]. This procedure is necessary to get
accurate series expansions for the probability density function P. and its
cumulative distribution function, without having to approximate a delta

function.
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Overlap Factor

In the case where pulse extent Xy ~ X4 is finite, it is possible to
find the average number of overlapping pulses at any one time instant; this
statistic, denoted by'fi, is called the overlap factor. In order to
determine it in a simple fashion, we concoct a very special shot noise
process: let

1 for all k ,

a

F(x)

1 for X] <X < Xy (C-26)

Then I(t) is a step function with amplitudes limited to the values
0, 1, 2, ... . Then obviously, the average number of overlapping pulses at

one time instant is just

Ry = TOET = wluy (1) {ox FOx) = o Bxy - 3) 5 (c22)

upon use of (C-13) with n=l and (C-26). If we let

r = I(XZ - Xl) (C"28)

denote the average pulse duration, we have the overlap factor in the form

Kl =v L. (C-29)

For the Gaussian or exponential pulses in (C-19), we have
X, - X; = *e, giving T = +o0, Ei = +%, This is in fact true, since
all the infinite tails overlap; however, it is not then an informative

statistic.
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Closed Form Characteristic Function Examples

There are a couple of examples of the circular pulise shape F and
amplitude characteristic function fa, where (C-9) can be evaluated in closed

form. This furnishes an alternative to the moment approach [4] used here.

Consider the circular pulse in (C-20); then the integral in (C-9) is

(using (C-15))

1 dx4 f ;(l-x ' =2 % de cose f_[¥ cose] -2 , (C-30)
3 b

which holds for any characteristic function fa. Now first let the

probability density function of 3 be exponential:
pla) = ——exp( ) Ua) s f(8) = (- i) (c-31)

Substitution in (C-30) yields

1-1¥u_ cose

73
2 S de cose _ . (C-32)
3 a

But we know that

2 de cose w [}( ]
Z = - =+ arc tan
0 T-zcose ~ "z 2 ( -2 1 5

+ 2 arc cos(-z) , (C-33)
z(la?%

via [5, egs. 2.554 2 and 2.553 3]. Then letting z = i;ua and using

= -

N2

[2, eqs. 4.4.2 with 4.4.26], (C-32) becomes
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-2 lﬂ(s-ua;) + jx(s-1) L ith s Q . uz >Yz
-y = a .

uy3s (C-34)

Combining these results in (C-9), the closed form characteristic function is

fl(}') = exp[— i—;’%iua{s +,Qn(s-uag) -1 %(s-l)}] s (C-35)

which holds for a circular pulse F and an exponential probability density

function p(a).

The second example is the one considered in detail here, namely the
Rayleigh probability density function p(a) given in (3). First substituting

(C-30) in (C-9), we have characteristic function

f1(¥) = exp[26](J(F)-1)] , (c-36)

where integral J(§) is defined as

k)

J(§) =f do cose f,[§ cose] . (C-37)
For Rayleigh probability density function (3), (C-37) can be expressed as
follows:
x
J(F) = de cose ? da exp(iag§ cose) 2 ex _a2 (C-38)
0 0 %a %a

Transform to rectangular coordinates according to a cos e = o3 X,

a sin e = o5 ¥, and obtain

2. .2
J(E) = ﬁ dx dy —i—expé o.X - 5—%—1—) . (c-39)
(xz,,yz)% :

0
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|}
But the integral on y here is, via y = x uA s equal to

od

1 X du 1.2 1 x2 X2

7 | el 3 =‘z*e’“’(r) Ko(r)' (€-40)
5 Wl )

the latter by means of [5, eq. 3.364 3]. Thus (C-39) becomes

F 2 2 2
JE) = f dx x expétoaX~ %—) %—exp(ﬁ—-) Ky (ﬁ—) =
(o]

2 2
= rdu exp(i 2%0&; u) u exp(— UT) Ko(g—) (C-41)
0

At this point, we have two alternatives. First, (C-41) could be
efficiently evaluated for all ¥ via an FFT; the decay of the integrand is
according to exp(-uz) for large u. Secondly, J(f) can be expressed in a

closed form in terms of a hypergeometric function; specifically

AP = Fp(ls 15 50 35 %) +

+ i(%))/’ b exp(-b?) [Io(bz) - ll(bz)] R (C-42)

where b = oag/z. The upper line follows from [5, eq. 6.755 6], while the
lower line used [5, eq. 6.755 9] with an application of partial derivative
3/3a to both sides. The characteristic function fI is finally obtained by

employing (C-42) in (C-36).
Still another alternative is afforded by use of the closed form for the

characteristic function of the Rayleigh probability density function, as given

in [7’ eq- 6}'
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Moments for Some Particular Pulse Shapes F

The moments of pulse shape F were encountered in evaluating the

cumulants x((n) of shot noise [(t), according to (24) or (C-13) as
uF(n) = J.dx F"(x) forn > | . (C-43)

For circular pulse (C-20), [5, eq. 3.621 1] yields moments

1 n n+l..2fn
5 2 +1
uF(n) = g dx (l-xz)'yza 252 de (cose)"l'1 = F‘I':* 2 ) s (C-44"
S 0

a result already quoted in (29).

More generally, for

{(l-xz)“ for (x| < 1}
F(x) = > (C-45)
0 for |x| > 1

[5, eq. 3.621 1] yields, with a trigonometric substitution,

2

For
(cos x)* for |x] <%
F(X) = ’ (C—47)
0 for |x] >%

{5, eq. 3.621 1] yields directly

r'z na+l
ue(n) = ZMT(?‘(?FF—YE . (C-48)

47




™ No. 841208
For
F(x) = x* exp(—x) U(x) ,
up(n) = : {na 1), (C-49)
while for

F(x) = x* exp(-x2/2) U(x) ,

na-1
na+l
ZT‘(Z)
Nat+]

N 2

Both relations follow directly from the definition of the [" function.

. (C-50)

UF(n) = 2

Some Probability Density Functions for Amplitude ay

For probability density function

p(a) = (alag;«$if§'a/°) u(a) , (C-51)

we have characteristic function
f(5) = (1-ifa) "} (C-52)

with moments

uy(n) = (y+1), o"

forn >0 (C-53)
and cumulants

Z,(n) = (n-1)t (y+1) o" forn > 1. (C-54)

This example subsumes the exponential probability density function, upon

setting y = 0.
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For probability density function

p(a) = 2(ala)] exp(-a/a’) u) , (C-55)

-1(z)

we have moments

o JJEE
a P(j%‘

This example subsumes respectively the one-sided Gaussian for y=0, the

forn > 0. (C-56)

Rayleigh for y=1, and the Maxwell probability density functions for y=2. The

result in (29) follows immediately by setting y=1, a= éﬁoa.

Convergence of Series for fn f.(§)

A power series expansion for fn fl(g) was developed in (C-12), namely,
s : @l
Jo £1(8) = 1 D> uy(n) weln) LE- (c-57)
n=1

here we employed (C-43). Since the moments in (C-57) can be easily evaluated
via recursion, according to results in the above two subsections, it might be
thought that (C-57) could be employed to evaluate the characteristic function
of I(t) directly, without recourse to the more difficult approaches required

in (C-9) or (C-35) or (C-36)-(C-42).

To see the drawbacks of this approach, consider first a circular pulse F
and a generalized exponential probability density function p(a) as in (C-51);
then a combination of (C-44) and (C-53) yields, for the n-th term of the sum
in (C-57),
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2(v+ )nrz(%ﬂ) N
Then ratio
Tn gnﬁ)(n*' -1) 2 2
= 7 X ; - ¥ as nN—» +eo, (C-59) i
n-2 -
regardless of the value of y. Therefore #
l ' ];’l as n—» +o0, (C-60)

meaning that series (C-57) only converges for |gl< 1/a. So (C-57) is not a

viable approach for the calculation of the characteristic function in this

case.

As a second example, we consider the circular pulse F with the
generalized Rayleigh probability density function in (C-55). Combination of
(C-44) with (C-56) yields for the n-th term of series (C-57),

) rf)
n n!(n+1)£P(r£l)

(i§a2)" . (C-61)

Then ratio

_*J_fz___ 5-2— as n— + =, (C-62)

-2 n -1

T

regardless of y. Therefore

,.,—(1-21’%‘;; as N> + o0, (C-63)

n-1
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meaning that series (C-57) converges for all ¥. However, direct numerical
evaluation of (C-57) via (C-61) and (C-62) loses all its significant digits
for large ¥, long before On fI(!) reaches its final value of -2@v + i0, due
to the alternating character of the series. So (C-57) is not a useful
approach for evaluation of the characteristic function, except for small §.
By contrast, the series expansion technique employed in [4] uses the moments
to directly estimate the desired probability density function and cumulative

distribution function of interest, for large arguments as well as small.

51/52
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APPENDIX D. PROGRAMS FOR CUMULATIVE DISTRIBUTION FUNCTION

AND PROBABILITY DENSITY FUNCTION

The programs used here to evaluate the cumulative distribution function
and probability density function of shot noise are listed below. The n-th
coefficient in a generalized Laguerre expansion of orthonormal polynomials is
denoted by b, and is plotted in figure D-1 for n = 0(1)70. It is seen to
oscillate and decay with n until n = 32, at which point round-off error
becomes important; however, by this time, ]bnl has decayed below the 1E-5
level. The round-off error is so dominant beyond n = 35, that no useful
results for bn can be obtained then. The particular parameter values (a, 8}

used for the Laguerre weighting are indicated in the listings.
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bOSTER PLUS CORNTINUOUS PART OF SHOT HOISE CDF. Foowe,
! VIA GENERALIZED LAGUERFE ENFHANSION AND MOMENT
M=7a U MAKTIMUN ORDER OF AFFPOXIMATION; MUMEBER OF MOMENTI FEOUIFRED
DOUBLE M, T M,k i INTEGEFR®: S T ST I I S ar iy o 2ot
REDIM Mome@eMy RODsMy  Le@stly
FEAL Momi@:1o0: ACQ:100),0 92180, vl
CRLL Momsrmt 2 M PO, Mame %05 toFa 1t RTEFR AT OFIGIN
Center=Nom. o Homdg, VOCENTER OF peooous
R2=Momd 2 “Mamdc@r-Center=Cent v Vo OMERN SOURFE SFRFERD OF pows
1 ]
!
¥

=4 e N da 0 P o

oo

DT DD T T

._
!
y 0
=
W

mESIORCRE FME SPREAD OF pov
¥ THE CHOICES  AlpkasAlphand AN

enter*lanter F2-1.,

Bet Senter

Bet a=RBer 30 WOLILTD MAFE A Ly=/ 2 =0

fpha=. 74
ta=2,1
Crinle Coetffld a_momiMyAtphaBeta, Momos (A o0 ! DIFECT MOMENT S

W
N erff]rzuia~momﬁﬂ,ﬂlpha,3eta.Momt~',H'+*! ' FECURSIVE MOMENTS
PRINT "Center = “;Center
PRINT "REm: ="3jRwnsz
Al=R1pha+l.
g1=1,-#1
Fl=1. FHGanmacALl >

TN T O S o S ey VoA SO Sy
fre pes G A0 00 =) 0 il fa O3 g e D S

Do I B AR OO I O v v O SO

DATA 901, . 002, 085, 01, 02, .85, .1,.2,.%,.4,.9
-8 DATA .6, .7, .5,.%,.95,.95,.9%9,,995,,992, ,99%

REARD Yi#*)
FOrR I=1 To =zt
YOl asFRInwphi OOl
HERT 1
Yi=Yiin
YE=YI2L0
INPUT “ORDER AMD LIMITS:",H, UL, LUZ
PRINT "ORDER AMD LIMITI:", MjUl;L2
D=z~ 2180,
PLOTTER IS “GRAFPHICS®
GFRAFHICS DH
WIHDOW Ut,U2,%1,¥2
FoR U=Ut T U2 STEP (D2-Ulor+,1
MOYE LU,v1L
DEAK U, v2
HEWT U
FOR I=1 TOQ 2t
MOYE L1, Ydlo
DRAW U2,Y0ls
HEAT 1
FEHUP
; FOF I=1 TO 188
458 U=Ul+Duxl
470 T=iJ-Betx
42 CHLL CagusrrecH-1,RL,T,LCx2
4939 Sum=AB  #*FHNF11 A1, Tr*01
5006 FOrR k=1 TO H
Sum=Sum+R b o sLik-13 K
HEAT kK
FePB+F1#EHPC-T+AY (LOGU T a*50my ! FROBABILITY THAT FY - U
IF P-a, AND PIL1. THEH 574
PENUP
SOTR S29
PLOT U,FHInuwphicP)
HE®WT 1
PEHUP
GOTO 296 55
ENB

S0 A B

1o (S

4 M A B

N A RSN NE AR RO SR XN N VN VN
oW -

LSO (R o)
GO OGO OO0 OL OO

&
n

PUEIOTOST OO D EE

- LTRSS B BN I T R RS B Y
N D 0 DN B ) P e
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S TN B I « EI v O o R PR AT TR Y
doea o 00 W
I ODOED 0 S

L I ]

56

DEF FHNInwuphi (#> ! IHNVFHICX)Y wia 28.2.23 with nodification
D=y-.5

IF ABS<D>>.81 THEN &9

P=2.5BE6232746323+Dx( 1, +D+0*1,.847193755128)

RETURH P

=¥

IF X>.5 THEHW P=1,-

P=SOR(-2.#L0OGC(P))D

T=1.4FP%#(] 432783 +P#(  1389269+P«. 001 308>
P=P-{2,.515517+P*{,BQZE8S3+P*,81062282>,T

IF X<.5 THEN P=-P

RETURN P

FNEWD

{

DEF FHGammatx) | Gammad(x? via HART, page 282, #5243
DOUEBLE HN,K

H=IMT )

R=X¥~N

IF H>8 0OR R+ >»0. THEN S48

FRIMNT "FHGammadk> I35 HOT DEFIHED FOR ¥ = "4

STOP

IF R>0. THEHN 8708

Gammaz=1.

GOTO 948

P=439, 3304348600256 76+R* (%0, 1828337522795 30+R <€, 7443597 24532525393 7
P= E?Ez FIBI378S21483E+R#(2008.527401307279312+R*#P
FP=42353.6895897440836+R# (20886, 8617892638374 +R*F)
P=439, 0235266214239 045-R« (1289, 4982341573280 16~-R+( 23, 031551524588125~K >
F=9940, 2874150827 70790-R+{ 1528, 6072737 7952202+R+(3)
O=42353.68356897448900+R*%( 23280, 3852330925664 33 -k~
CammazZ=P~ ! Gamma(2+Rr for B8 < P < 1
IF H>2 THEH 984@

IF H<2 THEH 1036

Gamma=Gamma2

RETURM Ganma

Gamma=Gammaz

FOR K=1 TO N-2

Gamma=Gamnma*{X-K)

HE®T K

RETURH Gamma

R=1.

FOR k=0 TO 1-H

R=Re(Y+KD

HEXT K

Gamma=Ganmaz <K

RETURHN Gamma

FHEHD
!




t11a
1120
1139
1148
1158
1168
1178
1180
1198
1200
1210
1228
1238
1248
1258
1260
1276
1280
1298
13680
1310
1328
13308
1340
1358
1388
1370
1380
1330
1400
1418
1429
1430
1440
1450
1450
1478
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DEF FNF11CRL, ¥ (Y SRS EE- DRSS
DOUBLE K

T=5=1.

FOR K=1 TO 286

T=T#X/(A14K>

S5=5+T

IF T<{=1.E-17%5 THEN RETURN g

NEXT K

PRINT "20@ TERMS IN FHF11 RT";R1;¥
RETURN S

FNEND

'

SUB Laguerre{DOUBLE HN,REAL Rlipha,X,L(%3 t Lr~alphads)
DOUBLE K

Al=Alpha-t,

L(ar=y,

L<Cir=AlTpha+1.-X

FOR K=2 TO N
LKD=C(K+K+R1-XD%L(K~1)-(K+RAL1)Y*L{k=-232 K
NEXT K

SUBEND

]

SUB Momnt_via cumnt ¢DOUBLE M,REAL Cum(#>,Momdi*))
DOUBLE K, J

REAL MomB

Mom(B)=MomB=EXPiCuniBl

FOR K=1 TO M

T=1.

S=Cund(kK>*Mond

FOR J=1 TO K-\

T=T#{K-J>73

S=S+T#CumCK~-Jr*Mom(J>

NEXT J

Mom(K>=5

NEXT K

SUBEND
!
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58

14296
1430
1500
1519
1528
1538
1540
1550
1568
1578
1538
1598
1660
1619
1620
1638
1640
1656
1660
1670
1638
1699
1789
1710
1720
17329
1740
1750
17€0
177@
1780
1790
1800
1218
1821
1320
1240
1858
1368
187@
1880
1299
1968
1918
19208
1930
1540
1959
1968
1974
19386
1398
2806
2010
2920
2838
2049
2858
2860
2970
2080

SUB Coeffld_via mom{DOURLE
RLLOQCATE Bi8:M>
DOURLE K,K1,J,Mx
T=1.

FOR kK=1 TO M
T=T*(Rlpha+K>#Beta
Mom<{K>=Mom<K>»~T |
NEXT K

a=1.
R<B=B(Br=Mom<a’
FOR K=1 TO M
Ki=K+1

T=1.

S=Mom<(a>

FOR J=1 TO K
T=T*{J-K12-]
S=S+T*MomCJ>

NEXT J
B=Q#{(AIpha+k) K
RC{ED>=S
B(K»=S*SAR Q>

NEXT K

Mx=Mx+10

IF Mx<M THEH 1700
Threshold=-7,
T2=Threshold*2.
¥W=18.~Threcsheold
GINIT
PLOTTER IS
GRAPHICS OH
WINDOW 8. ,FLT(Mx),T2,06.
LIMNE TYPE 3

FOR J=8 TD Mx STEP 19
MOVE J,TZ

DRAW J,a.

NE®T J

FOR J=72 T0O B

MOVE B.,J

DRAW Mx,J

HEXKT J

PEHUP

LINE TYPE 1

IMRGE 4D,2¢4%,M.1?7DE>
PRINT » K

Sum=08,

FOR K= TO M

B=B(K>

Sum=Sum+B*E

PRINT USING 19089;K,B, Sum
IF B<¥Y THEH 20080
Y=LGT<(B>

GDOTO 28409

IF B>~-Y THEM 20380
Y=T72-LGT<¢~B>

GOTO 2e4p

Y=Threshold

PLOT K,¥

NEXT K

PEMUP

SUBEND
!

"GRAPHICS"

NORMALIZED MOMEMTS,

« ,REAL Rlipha,Beta,Momc*d , A<*2,

FELATIVE TO Alpha RND Beta

Sum"




LI SN (SO (N (O (8
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o
&
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<

[
Y]
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SUR Coefflr_via mom(DOUBLE M,RERL Alpha,Beta,Momi+r,R($3D

ALLOCATE B<(w:M>
DOUBLE K,K1,J,Mx
T=1.

FOrR K=1 TO M
T=T*(Alpha+K>*Beta
Momok r=MomckK2~T !
NEXT K

0=1.
ARE=R(B»=B{BI=MoniB>
FOR K=1 TO M
Ki=K+1

T=1.

S=Mom{K)>-RO

FOR J=1 TO K-1
T=T#{J-K1>7J
S=R-T#RAT»

HEXT J

IF ¥ MJD 2=1 N 8=-3
B=0# (A pha+k) K

ACK =5

BCK»=S#SQR (DD

NE®T K

Mx=Mx+18

IF M=<M THEM 2326
Threshold=-7.
T2=Threshold*Zz,
VY=1a,Threzhold

GINIT

FLOTTER IS "GRAPHICS"
GRAPHICS ON

WINDOW 8, ,FLT(Mx2, T2, 8.
LINE TYFPE 3

FOR J=8 TO Mz STEP 10

MOVE J,T2

DRRAW J,0.

NEXT J

FOR JI=TZ TO ©

MOVE ©.,J]

DRAMW Mx, J

HEXT J

FEHUP

LIME TYPE 1

IMAGE 4D,2¢44,M.17DE>
PRINT * 4 BUKED>
Sum=9a,

FOR K=00 Tg M
E=B(kK 3
Sum=Sum+B#*B
PRIHT USIMHG 2S520;K,EB, Sum
1F B<Y THEH 28
¥Y=LGT<E>

GOTO 2669

IF B»-V THEH Z2&53
Y=T2-LGT<~-B2

GOTO 2660

Y=Threzho!ld

PLOT K,¥%

NEXT K

PENUF

SUBEHD

1

ol
~
<

[n)

MORMALIZED MOMENTS,

Sum"

RELATIVE T0O Alpha AHD Beta
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2718 SUB Moment=(DAUEBLE M,REARL PO,Mcmi%)) b SHOT HOISE

2rze Duerlap=6.2 ' AY. NO. PULSES/SEC * RVYERRAGE FULSE DURAT!
27328 Sigmaa=1. ! FRARRMETER OF RAYLEIGH AMPLITUDE PIF

2748 PB;EKP(—Duerlap) ' PROBABILITY OF ZERD AMPLITUDE OF SHOT HOISE
zrse ALLOCATE Cumc@iM: ! RARRAY FOR CUMULANTS

27E1R DOUBLE K

2778 S=SigqmaascSigmaa

2788 Cumi@s=a,

2738 Cumilr=0uerlap*Sigmaas, 259+P14SORC, 5%xP1)

2289 Cumi2)=0uverlap*S*4, <3,

2818 FOR K=3 TO M

2829 CumCE I =Cum (k-2 #3xRKek k410

2838 HEXT K

2248 CALL Momnt_wia_cumnt M, Cumdcer (Mam*))

2898 Mom<ai=Mom(@1r~FO

28e8 SUBEND

13 ' CONTINUOUS PRRT OF SHOT NOISE FDF, pcfud, YIA
2@ !  GEMERALIZED LAGUERRE EXPANSION AMD MOMENTS

DOUERLE M, I, H,k ' INTEGERS < 2431 = 2,147,423,
FEDIM Mom<@sMd),Ac@iMa, LeBiM

REAL Mami@: 1092 ,ACE8: 186>, LC0; 1087

CALL Momentz oM, FE,Momi4D PY IS STEF AT ORIGIH

!
Center=Momn 1y " Mamc@ U CENTER OF podul

RE=Mom 2 Mom (B -Center+Center | MEAN SQUARE SFREAD NOF Pl
Rue=3RRR2) ' RMZ SPREAD OF pciud
!
!

Alphad=Center#lenter-Ra-1. THE CHQICES Alpha=Alphad

Bect aB=RI Canter
Alpha=, 74
Eeta=2,1

CALL Coeffld_wia momiM,Alpha,Beta,Momes2 AC*1D | DIRECT

CHRLL EoeFFlr_uia_momim,ﬁlpha,EeLa,Mom(*?,H(*)) ' FECURSIVE

FRINT "Cernter = ";Center

PRIHT "Rms ="+Pms

Fl=1.-0Beta*FHGammasfAlphatl, 52
IMPUT "“ORDER AMD LIMITS:",H,U1,U2

PRIMT "ORDER AND LIMITS:",HjuUljuz

Du=<li2-u15r.-199,

H=d ., (-1

FLOTTER IS "GRAPMICS®

GRAPHICS 0OH

WINHDOW 41,02, -H#,1,H

GRID <U2-Uls%,1,H%.1

PLOT &.,9.

FOR I=1 TO 168

RTRR UGt B SR I COIS I (Nl R U s SN RS | I O %

CIRQT IO TARNORI TS DD DD DD
Yo

LR I G SR W R U O8N SR O (R T O Qi YO S P D S N U Py
S QO R B G e D

Uslli+Dusl

19 T=l-Beta

izZa CALL LaguerredH,Alpha, T,Lo*3)
338 Bum=HC@’
346 FOR ¥=1 TO W
352 SumsSSumtACE YLK S
360 HEAT F
g F=F1#EXP(-T+Al pha*LOG(Ti2#Sum t POF OF RY RT U
389 FLOT U, F
338 HEAT I
40¢ FEMUP
410 GOTo zee
420 EMD
4730 |

H=2g P MAKIMUM ORDER OF APPROXIMATION; NUMEER OF MOMEMTS REQUIRED

642

AND

Beta=Bet ad WOULD MRKE ROl3=R(2=8

MOMENTS
MOMENTS
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Evaluation of Densities and
Distributions via Hermite and
Generalized Laguerre Series
Employing High-Order Expansion
Coefficients Determined
Recursively via

Moments or Cumulants

A. H. Nuuall
ABSTRACT

High-order series expansions of probability density functions and
cumulative distribution functions, in Hermite as well as generalized
Laguerre orthogonal polynomials, have been obtained, where the
weighting functions in both cases can have arbitrary (mismatched)
parameter values.

The high-order expansion coefficients for both the Hermite and
generalized Laguerre series can each be obtained by any one of three
fast recursive procedures (all of which have been programmed, and for
which program listings are presented). The forms of these three
recursive procedures differ in the Hermite versus Laguerre cases;
however, they are basically either convolutions or finite alternating
series with binomial coefficients. Accuracy of the three procedures is
compared. Numerous examples of series expansions of probability
density functions and cumulative distribution functions are given,
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ABSTRACT

High-order series expansions of probability density functions and cumu-
lative distribution functions, in Hermite as well as generalized Laguerre
orthogonal polynomials, have been obtained, where the weighting functions in
both cases can have arbitrary (mismatched) parameter values; that is, the two
free parameters o and B in the weightings

Y

wiu) = ! exp(— KE___El_) for all u, Hermite
\VFLE: 282
o

w(u) = ua+$xP(-u/s) for u > 0, generalized Laguerre
B Tf{a + 1)

need not be chosen so that the first two expansion coefficients b, and b, in
the orthonormal series are zero. (The zero-th order expansion coefficient by
is never zero.) Nonetheless, all the available N lowest-order moments of the
approximating probability density function are maintained identical to those
of the given probability density function, regardless of the weighting employed
and any of its free parameter values.

It has been discovered that deliberate mismatch of a and B results in
faster-decaying coefficient sequences {bn}g than when o and B are chosen to
make b; = b, = 0, which is a common choice. For example, the central limit
theorem is just such a case, where o and 8 in the Hermite expansion are taken
as the mean and standard deviation, respectively, and the number of moments
employed is limited to just order N = 2.

A fast trial-and-error procedure is used in general to determine good
values of weighting parameters o and 8. The only statistics needed about the
given probability density function or cumulative distribution function are
either its moments or cumulants, through order N. Furthermore, all the results
presented actually apply to functions which have arbitrary area (not necessarily
equal to unity) and to functions which can become negative. In fact, one of
the applications considered is to a shot noise process where the continuous
part of the probability density function has area less than 1, and which is
well approximated by a generalized Laguerre series expansion.

The high-order expansion coefficients for both the Hermite and generalized
Laguerre series can each be obtained by any one of three fast recursive proce-
dures {all of which have been programmed, and for which program listings are
presented):

(a) recursively via cumulants,
(b) directly via moments,

(c) recursively via moments.
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The forms of these three recursive procedures differ in the Hermite versus
Laguerre cases; however, they are basically either convolutions or finite
alternating series with binomial coefficients. The occurrence and quantitative
value of round-off error for large N is easily discerned in a plot of the
expansion coefficient sequence for each choice of o and 8, and for each of the
three procedures, as well as for both types of series expansions.

Comparisons of the accuracy of the three alternative recursive procedures
reveals that expansion coefficients determined recursively via cumulants are
generally most accurate and least susceptible to round-off error. Numerous
examples of series expansions of probability density functions and cumulative
distribution functions are given, including one with N = 150 terms, where the
last expansion coefficient is of size 1E-10 relative to the leading coefficient
b,. Estimates of the error associated with the approximations obtained by the
Hermite and generalized Laguerre series are derived and compared with results
of several examples.
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